• 1.

    Parry CM, Hien TT, Dougan G, White NJ, Farrar JJ, 2002. Typhoid fever. N Engl J Med 347: 17701782.

  • 2.

    Ibarra JA, Steele-Mortimer O, 2009. Salmonella–the ultimate insider. Salmonella virulence factors that modulate intracellular survival. Cell Microbiol 11: 15791586.

    • Search Google Scholar
    • Export Citation
  • 3.

    Sano G, Takada Y, Goto S, Maruyama K, Shindo Y, Oka K, Matsui H, Matsuo K, 2007. Flagella facilitate escape of Salmonella from oncotic macrophages. J Bacteriol 189: 82248232.

    • Search Google Scholar
    • Export Citation
  • 4.

    Silverman M, Simon M, 1980. Phase variation: genetic analysis of switching mutants. Cell 19: 845854.

  • 5.

    Moshitch S, Doll L, Rubinfeld BZ, Stocker BA, Schoolnik GK, Gafni Y, Frankel G, 1992. Mono- and bi-phasic Salmonella typhi: genetic homogeneity and distinguishing characteristics. Mol Microbiol 6: 25892597.

    • Search Google Scholar
    • Export Citation
  • 6.

    Baker S, Hardy J, Sanderson KE, Quail M, Goodhead I, Kingsley RA, Parkhill J, Stocker B, Dougan G, 2007. A novel linear plasmid mediates flagellar variation in Salmonella typhi. PLoS Pathol 3: e59.

    • Search Google Scholar
    • Export Citation
  • 7.

    Guinée PA, Jansen WH, Maas HM, Le Minor L, Beaud R, 1981. An unusual H antigen (Z66) in strains of Salmonella typhi. Ann Microbiol (Paris) 132: 331334.

    • Search Google Scholar
    • Export Citation
  • 8.

    Hatta M, Goris MG, Heerkens E, Gooskens J, Smits HL, 2002. Simple dipstick assay for the detection of Salmonella typhi-specific IgM antibodies and the evolution of the immune response in patients with typhoid fever. Am J Trop Med Hyg 66: 416421.

    • Search Google Scholar
    • Export Citation
  • 9.

    Hatta M, Smits HL, 2007. Detection of Salmonella typhi by nested polymerase chain reaction in blood, urine, and stool samples. Am J Trop Med Hyg 76: 139143.

    • Search Google Scholar
    • Export Citation
  • 10.

    Boom R, Sol CJ, Salimans MM, Jansen CL, Wertheim-van Dillen PM, van der Noordaa J, 1990. Rapid and simple method for purification of nucleic acids. J Clin Microbiol 28: 495503.

    • Search Google Scholar
    • Export Citation
  • 11.

    Frankel G, Newton SM, Schoolnik GK, Stocker BA, 1989. Intragenic recombination in a flagellin gene: characterization of the H1-j gene of Salmonella typhi. EMBO J 8: 31493152.

    • Search Google Scholar
    • Export Citation
  • 12.

    Huang X, Phung le V, Dejsirilert S, Tishyadhigama P, Li Y, Liu H, Hirose K, Kawamura Y, Ezaki T, 2004. Cloning and characterization of the gene encoding the z66 antigen of Salmonella enterica serovar typhi. FEMS Microbiol Lett 234: 239246.

    • Search Google Scholar
    • Export Citation
  • 13.

    Su LH, Ou JT, Leu HS, Chiang PC, Chiu YP, Chia JH, Kuo AJ, Chiu CH, Chu C, Wu TL, Sun CF, Riley TV, Chang BJ, 2003. Infection Control Group. Extended epidemic of nosocomial urinary tract infections caused by Serratia marcescens. J Clin Microbiol 41: 47264732.

    • Search Google Scholar
    • Export Citation
  • 14.

    Takahashi H, Kramer MH, Yasui Y, Fujii H, Nakase K, Ikeda K, Imai T, Okazawa A, Tanaka T, Ohyama T, Okabe N, 2004. Nosocomial Serratia marcescens outbreak in Osaka, Japan, from 1999 to 2000. Infect Control Hosp Epidemiol 25: 156161.

    • Search Google Scholar
    • Export Citation
  • 15.

    Jaruratanasirikul S, Kalnauwakul S, 1991. Edwardsiella tarda: a causative agent in human infections. Southeast Asian J Trop Med Public Health 22: 3034.

    • Search Google Scholar
    • Export Citation
  • 16.

    Nelson JJ, Nelson CA, Carter JE, 2009. Extraintestinal manifestations of Edwardsiella tarda infection: a 10-year retrospective review. J La State Med Soc 161: 103106.

    • Search Google Scholar
    • Export Citation
  • 17.

    Tamada T, Koganemaru H, Matsumoto K, Hitomi S, 2009. Urosepsis caused by Edwardsiella tarda. J Infect Chemother 15: 191194.

  • 18.

    Samatey FA, Imada K, Nagashima S, Vonderviszt F, Kumasaka T, Yamamoto M, Namba K, 2001. Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling. Nature 410: 331337.

    • Search Google Scholar
    • Export Citation
  • 19.

    Yoshioka K, Aizawa S, Yamaguchi S, 1995. Flagellar filament structure and cell motility of Salmonella typhimurium mutants lacking part of the outer domain of flagellin. J Bacteriol 177: 10901093.

    • Search Google Scholar
    • Export Citation
  • 20.

    Ramos HC, Rumbo M, Sirard JC, 2004. Bacterial flagellins: mediators of pathogenicity and host immune responses in mucosa. Trends Microbiol 12: 509517.

    • Search Google Scholar
    • Export Citation
  • 21.

    Steiner TS, 2007. How flagellin and toll-like receptor 5 contribute to enteric infection. Infect Immun 75: 545552.

  • 22.

    Butler MT, Wang Q, Harshey RM, 2010. Cell density and mobility protect swarming bacteria against antibiotics. Proc Natl Acad Sci USA 107: 37763781.

    • Search Google Scholar
    • Export Citation
  • 23.

    Baker S, Holt K, van de Vosse E, Roumagnac P, Whitehead S, King E, Ewels P, Keniry A, Weill FX, Lightfoot D, van Dissel JT, Sanderson KE, Farrar J, Achtman M, Deloukas P, Dougan G, 2008. High-throughput genotyping of Salmonella enterica serovar Typhi allowing geographical assignment of haplotypes and pathotypes within an urban District of Jakarta, Indonesia. J Clin Microbiol. 46: 17411746.

    • Search Google Scholar
    • Export Citation
 
 
 

 

 
 
 

 

 

 

 

 

 

New Flagellin Gene for Salmonella enterica serovar Typhi from the East Indonesian Archipelago

View More View Less
  • Department of Medical Microbiology, Molecular Biology and Immunology Laboratory, Faculty of Medicine, Hasanuddin University, Makassar, South-Sulawesi, Indonesia; KIT Biomedical Research, Royal Tropical Institute/Koninklijk Instituut voor de Tropen (KIT), Amsterdam, The Netherlands

Phase variation is a property unique of some Salmonella enterica serovar Typhi strains from Indonesia. Salmonella Typhi isolates from Indonesia have been described that in addition to the phase 1 Hd flagellin gene contain a second flagellin gene named z66. S. Typhi isolates from Indonesia with a mutant Hd gene named Hj have also been described. Here, we have identified another flagellin gene of S. Typhi, named Ind, showing a closest homology with the flagellin gene of Serratia marcescens. The Ind gene was detected in 21.8% of the S. Typhi isolates from the East Indonesian archipelago, all of which contained the Hd gene. The Hj gene was not detected. The z66 gene was present in 15.4% of the isolates. The presence of these “foreign” flagellin genes could be associated with an increased risk for developing severe disease.

Author Notes

*Address correspondence to Henk L. Smits, KIT Biomedical Research, Royal Tropical Institute/Koninklijk Instituut voor de Tropen (KIT), Meibergdreef 39, 1105 AZ Amsterdam, The Netherlands. E-mail: h.smits@kit.nl

Authors' addresses: Mochammad Hatta and Andi R. Sultan, Department of Medical Microbiology, Molecular Biology and Immunology Laboratory, Faculty of Medicine, Hasanuddin University, Makassar, South-Sulawesi, Indonesia, E-mails: hattaram@indosat.net.id and ar_sultan2002@yahoo.com. Rob Pastoor and Henk L. Smits, KIT Biomedical Research, Royal Tropical Institute/Koninklijk Instituut voor de Tropen (KIT), Amsterdam, The Netherlands, E-mails: h.smits@kit.nl and r.pastoor@kit.nl.

Save