Guerra CA, Hay SI, Lucioparedes LS, Gikandi PW, Tatem AJ, Noor AM, Snow RW, 2007. Assembling a global database of malaria parasite prevalence for the Malaria Atlas Project. Malar J 6: 17.
Mendis K, Sina BJ, Marchesini P, Carter R, 2001. The neglected burden of Plasmodium vivax malaria. Am J Trop Med Hyg 64: 97–106.
Korenromp E, Miller J, Nahlen B, Wardlaw T, Young M, 2005. World malaria report. RBM/WHO/UNICEF, ed. Geneva, Switzerland: Roll Back Malaria, 1–214.
Subdirección de Vigilancia y Control en Salud Pública INdS, 2006. Informe del VI período epidemiológico: malaria. SIVIGILA Semanas 1–24: 21–25.
Herrera S, Bonelo A, Perlaza BL, Fernandez OL, Victoria L, Lenis AM, Soto L, Hurtado H, Acuna LM, Velez JD, Palacios R, Chen-Mok M, Corradin G, Arévalo-Herrera M, 2005. Safety and elicitation of humoral and cellular responses in Colombian malaria-naive volunteers by a Plasmodium vivax circumsporozoite protein-derived synthetic vaccine. Am J Trop Med Hyg 73: 3–9.
Polley SD, McRobert L, Sutherland CJ, 2004. Vaccination for vivax malaria: targeting the invaders. Trends Parasitol 20: 99–102.
Valderrama-Aguirre A, Quintero G, Gomez A, Castellanos A, Perez Y, Mendez F, Arévalo-Herrera M, Herrera S, 2005. Antigenicity, immunogenicity, and protective efficacy of Plasmodium vivax MSP1 Pv200L: a potential malaria vaccine subunit. Am J Trop Med Hyg 73: 16–24.
Genton B, Al-Yaman F, Betuela I, Anders RF, Saul A, Baea K, Mellombo M, Taraika J, Brown GV, Pye D, Irving DO, Felger I, Beck HP, Smith TA, Alpers MP, 2003. Safety and immunogenicity of a three-component blood-stage malaria vaccine (MSP1, MSP2, RESA) against Plasmodium falciparum in Papua New Guinean children. Vaccine 22: 30–41.
Guttinger M, Romagnoli P, Vandel L, Meloen R, Takacs B, Pink JR, Sinigaglia F, 1991. HLA polymorphism and T cell recognition of a conserved region of p190, a malaria vaccine candidate. Int Immunol 3: 899–906.
Putaporntip C, Jongwutiwes S, Sakihama N, Ferreira MU, Kho WG, Kaneko A, Kanbara H, Hattori T, Tanabe K, 2002. Mosaic organization and heterogeneity in frequency of allelic recombination of the Plasmodium vivax merozoite surface protein-1 locus. Proc Natl Acad Sci USA 99: 16348–16353.
Putaporntip C, Jongwutiwes S, Tanabe K, Thaithong S, 1997. Interallelic recombination in the merozoite surface protein 1 (MSP-1) gene of Plasmodium vivax from Thai isolates. Mol Biochem Parasitol 84: 49–56.
Gonzalez JM, Olano V, Vergara J, Arévalo-Herrera M, Carrasquilla G, Herrera S, Lopez JA, 1997. Unstable, low-level transmission of malaria on the Colombian Pacific Coast. Ann Trop Med Parasitol 91: 349–358.
Snounou G, 1996. Detection and identification of the four malaria parasite species infecting humans by PCR amplification. Methods Mol Biol 50: 263–291.
Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL, 2007. GenBank. Nucleic Acids Res 35: 21–25.
Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG, 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882.
Kumar S, Tamura K, Nei M, 2004. MEGA3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5: 150–163.
Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R, 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19: 2496–2497.
Tajima F, 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585–595.
Fu YX, Li WH, 1993. Statistical tests of neutrality of mutations. Genetics 133: 693–709.
Nei M, Gojobori T, 1986. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3: 418–426.
Nei M, Kumar S, 2000. Molecular Evolution and Phylogenetics. New York: Oxford University Press.
Saitou N, Nei M, 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425.
Caro-Aguilar I, Rodriguez A, Calvo-Calle JM, Guzman F, De la Vega P, Patarroyo ME, Galinski MR, Moreno A, 2002. Plasmodium vivax promiscuous T-helper epitopes defined and evaluated as linear peptide chimera immunogens. Infect Immun 70: 3479–3492.
Tanabe K, Escalante A, Sakihama N, Honda M, Arisue N, Horii T, Culleton R, Hayakawa T, Hashimoto T, Longacre S, Pathirana S, Handunnetti S, Kishino H, 2007. Recent independent evolution of msp1 polymorphism in Plasmodium vivax and related simian malaria parasites. Mol Biochem Parasitol 156: 74–79.
Nogueira PA, Alves FP, Fernandez-Becerra C, Pein O, Santos NR, Pereira da Silva LH, Camargo EP, del Portillo HA, 2006. A reduced risk of infection with Plasmodium vivax and clinical protection against malaria are associated with antibodies against the N terminus but not the C terminus of merozoite surface protein 1. Infect Immun 74: 2726–2733.
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 0 | 0 | 0 |
Full Text Views | 254 | 85 | 1 |
PDF Downloads | 34 | 12 | 1 |
Merozoite surface protein 1 (MSP-1) is a polymorphic malaria protein with functional domains involved in parasite erythrocyte interaction. Plasmodium vivax MSP-1 has a fragment (Pv200L) that has been identified as a potential subunit vaccine because it is highly immunogenic and induces partial protection against infectious parasite challenge in vaccinated monkeys. To determine the extent of genetic polymorphism and its effect on the translated protein, we sequenced the Pv200L coding region from isolates of 26 P. vivax-infected patients in a malaria-endemic area of Colombia. The extent of nucleotide diversity (π) in these isolates (0.061 ± 0.004) was significantly lower (P ≤ 0.001) than that observed in Thai and Brazilian isolates; 0.083 ± 0.006 and 0.090 ± 0.006, respectively. We found two new alleles and several previously unidentified dimorphic substitutions and significant size polymorphism. The presence of highly conserved blocks in this fragment has important implications for the development of Pv200L as a subunit vaccine candidate.
Financial support: This study was supported through a P. vivax vaccine research program granted by the National Institute of Allergy and Infectious Diseases (NIAID grant no. A1-49486/ TMRC), National Bureau of Sciences, University of Valle State (contract no. 245-2004), COLCIENCIAS (grant 1106-04-16489), and the Colombian Ministry of Social Protection (grant 2304-04-19524) (contract no.253-2005). Ananías A. Escalante is supported by the grant R01GM080586 from the National Institutes of Health, USA and through an International Center of Excellence for Malaria Research NIAID/ICEMR grant no U 19AI089702.
Authors' addresses: Augusto Valderrama-Aguirre, Evelin Zúñiga-Soto, Luz Ángela Moreno, Myriam Arévalo-Herrera, and Sócrates Herrera, Instituto de Inmunología, Facultad de Salud, Universidad del Valle, Cali, Colombia and Malaria Vaccine and Drug Development Center, Cali, Colombia, E-mails: avalderrama@inmuno.org, ezuniga@inmuno.org, luzangelmo@hotmail.com, marevalo@inmuno.org, and sherrera@inmuno.org. Leonardo Mariño-Ramírez, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Computational Biology Branch, Building 38A, Bethesda, MD, E-mail: marino@ncbi.nlm.nih.gov. Ananías A. Escalante, School of Life Sciences, Arizona State University, Tempe, AZ, E-mail: Ananias.Escalante@asu.edu.
Reprint requests: Sócrates Herrera, Malaria Vaccine and Drug Development Center, Carrera 37 - 2Bis No. 5E - 08, Cali, Colombia, E-mail: sherrera@inmuno.org.