• 1.

    Mendis K, Sina BJ, Marchesini P, Carter R, 2001. The neglected burden of Plasmodium vivax malaria. Am J Trop Med Hyg 64: 97106.

  • 2.

    Herrera S, Bonelo A, Perlaza BL, Fernandez OL, Victoria L, Lenis AM, Soto L, Hurtado H, Acuna LM, Velez JD, Palacios R, Chen-Mok M, Corradin G, Arévalo-Herrera M, 2005. Safety and elicitation of humoral and cellular responses in Colombian malaria-naive volunteers by a Plasmodium vivax circumsporozoite protein-derived synthetic vaccine. Am J Trop Med Hyg 73: 39.

    • Search Google Scholar
    • Export Citation
  • 3.

    Malkin EM, Durbin AP, Diemert DJ, Sattabongkot J, Wu Y, Miura K, Long CA, Lambert L, Miles AP, Wang J, Stowers A, Miller LH, Saul A, 2005. Phase 1 vaccine trial of Pvs25H: a transmission blocking vaccine for Plasmodium vivax malaria. Vaccine 23: 31313138.

    • Search Google Scholar
    • Export Citation
  • 4.

    Wu Y, Ellis RD, Shaffer D, Fontes E, Malkin EM, Mahanty S, Fay MP, Narum D, Rausch K, Miles AP, Aebig J, Orcutt A, Muratova O, Song G, Lambert L, Zhu D, Miura K, Long C, Saul A, Miller LH, Durbin AP, 2008. Phase 1 trial of malaria transmission blocking vaccine candidates Pfs25 and Pvs25 formulated with montanide ISA 51. PLoS ONE 3: e2636.

    • Search Google Scholar
    • Export Citation
  • 5.

    Bell BA, Wood JF, Bansal R, Ragab H, Cargo J 3rd, Washington MA, Wood CL, Ware LA, Ockenhouse CF, Yadava A, 2009. Process development for the production of an E.coli produced clinical grade recombinant malaria vaccine for Plasmodium vivax. Vaccine 27: 14481453.

    • Search Google Scholar
    • Export Citation
  • 6.

    Herrington D, Davis J, Nardin E, Beier M, Cortese J, Eddy H, Losonsky G, Hollingdale M, Sztein M, Levine M, Nussenzweig RS, Clyde D, Edelman R, 1991. Successful immunization of humans with irradiated malaria sporozoites: humoral and cellular responses of the protected individuals. Am J Trop Med Hyg 45: 539547.

    • Search Google Scholar
    • Export Citation
  • 7.

    Chulay JD, Schneider I, Cosgriff TM, Hoffman SL, Ballou WR, Quakyi IA, Carter R, Trosper JH, Hockmeyer WT, 1986. Malaria transmitted to humans by mosquitoes infected from cultured Plasmodium falciparum. Am J Trop Med Hyg 35: 6668.

    • Search Google Scholar
    • Export Citation
  • 8.

    Egan JE, Hoffman SL, Haynes JD, Sadoff JC, Schneider I, Grau GE, Hollingdale MR, Ballou WR, Gordon DM, 1993. Humoral immune responses in volunteers immunized with irradiated Plasmodium falciparum sporozoites. Am J Trop Med Hyg 49: 166173.

    • Search Google Scholar
    • Export Citation
  • 9.

    Trager W, Jensen JB, 1976. Human malaria parasites in continuous culture. Science 193: 673675.

  • 10.

    Ponnudurai T, Verhave JP, Meuwissen JH, 1982. Mosquito transmission of cultured Plasmodium falciparum. Trans R Soc Trop Med Hyg 76: 278279.

  • 11.

    Epstein JE, Rao S, Williams F, Freilich D, Luke T, Sedegah M, de la Vega P, Sacci J, Richie TL, Hoffman SL, 2007. Safety and clinical outcome of experimental challenge of human volunteers with Plasmodium falciparum-infected mosquitoes: an update. J Infect Dis 196: 145154.

    • Search Google Scholar
    • Export Citation
  • 12.

    Herrera S, Fernandez O, Manzano MR, Murrain B, Vergara J, Blanco P, Palacios R, Velez JD, Epstein JE, Chen-Mok M, Reed ZH, Arévalo-Herrera M, 2009. Successful sporozoite challenge model in human volunteers with Plasmodium vivax strain derived from human donors. Am J Trop Med Hyg 81: 740746.

    • Search Google Scholar
    • Export Citation
  • 13.

    Hurtado S, Salas ML, Romero JF, Zapata JC, Ortiz H, Arévalo-Herrera M, Herrera S, 1997. Regular production of infective sporozoites of Plasmodium falciparum and P. vivax in laboratory-bred Anopheles albimanus. Ann Trop Med Parasitol 91: 4960.

    • Search Google Scholar
    • Export Citation
  • 14.

    Snounou G, Viriyakosol S, Jarra W, Thaithong S, Brown KN, 1993. Identification of the four human malaria parasite species in field samples by the polymerase chain reaction and detection of a high prevalence of mixed infections. Mol Biochem Parasitol 58: 283292.

    • Search Google Scholar
    • Export Citation
  • 15.

    Graves PM, 1980. Studies on the use of a membrane feeding technique for infecting Anopheles gambiae with Plasmodium falciparum. Trans R Soc Trop Med Hyg 74: 738742.

    • Search Google Scholar
    • Export Citation
  • 16.

    Peters W, Ramkaran AE, 1980. The chemotherapy of rodent malaria, XXXII. The influence of p-aminobenzoic acid on the transmission of Plasmodium yoelii and P. berghei by Anopheles stephensi. Ann Trop Med Parasitol 74: 275282.

    • Search Google Scholar
    • Export Citation
  • 17.

    Rickman LS, Jones TR, Long GW, Paparello S, Schneider I, Paul CF, Beaudoin RL, Hoffman SL, 1990. Plasmodium falciparum-infected Anopheles stephensi inconsistently transmit malaria to humans. Am J Trop Med Hyg 43: 441445.

    • Search Google Scholar
    • Export Citation
  • 18.

    Solarte Y, Manzano MM, Rocha L, Hurtado H, James MA, Arevalo-Herrera M, Herrera S, 2011. Plasmodium vivax sporozoites production in Anopheles mosquitoes for vaccine clinical trials. Am J Trop Med Hyg 84 (Suppl 2): 2834.

    • Search Google Scholar
    • Export Citation
  • 19.

    Gamage-Mendis AC, Rajakaruna J, Weerasinghe S, Mendis C, Carter R, Mendis KN, 1993. Infectivity of Plasmodium vivax and P. falciparum to Anopheles tesellatus: relationship between oocyst and sporozoite development. Trans R Soc Trop Med Hyg 87: 36.

    • Search Google Scholar
    • Export Citation
  • 20.

    Church LW, Le TP, Bryan JP, Gordon DM, Edelman R, Fries L, Davis JR, Herrington DA, Clyde DF, Shmuklarsky MJ, Schneider I, McGovern TW, Chulay JD, Ballou WR, Hoffman SL, 1997. Clinical manifestations of Plasmodium falciparum malaria experimentally induced by mosquito challenge. J Infect Dis 175: 915920.

    • Search Google Scholar
    • Export Citation
  • 21.

    Powell RD, McNamara JV, 1970. Infection with chloroquine-resistant Plasmodium falciparum in man: prepatent periods, incubation periods, and relationships between parasitemia and the onset of fever in nonimmune persons. Ann N Y Acad Sci 174: 10271041.

    • Search Google Scholar
    • Export Citation
  • 22.

    Verhage DF, Telgt DS, Bousema JT, Hermsen CC, van Gemert GJ, van der Meer JW, Sauerwein RW, 2005. Clinical outcome of experimental human malaria induced by Plasmodium falciparum-infected mosquitoes. Neth J Med 63: 5258.

    • Search Google Scholar
    • Export Citation
  • 23.

    Vaughan JA, Noden BH, Beier JC, 1994. Sporogonic development of cultured Plasmodium falciparum in six species of laboratory-reared Anopheles mosquitoes. Am J Trop Med Hyg 51: 233243.

    • Search Google Scholar
    • Export Citation
  • 24.

    Cavasini CE, Mattos LC, Couto AA, Bonini-Domingos CR, Herrera S, Neiras WC, Alves RT, Rossit AR, Castilho L, Machado RL, 2007. Plasmodium vivax infection among Duffy antigen-negative individuals from the Brazilian Amazon region: an exception? Trans R Soc Trop Med Hyg 101: 10421044.

    • Search Google Scholar
    • Export Citation
  • 25.

    Ménard D, Barnadas C, Bouchier C, Henry-Halldin C, Gray LR, Ratsimbasoa A, Thonier V, Carod JF, Domarle O, Colin Y, Bertrand O, Picot J, King CL, Grimberg BT, Mercereau-Puijalon O, Zimmerman PA, 2010. Plasmodium vivax clinical malaria is commonly observed in Duffy-negative Malagasy people. Proc Natl Acad Sci U S A 30: 59675971.

    • Search Google Scholar
    • Export Citation
  • 26.

    Kelly-Hope LA, McKenzie FE, 2009. The multiplicity of malaria transmission: a review of entomological inoculation rate measurements and methods across sub-Saharan Africa. Malar J 8: 19.

    • Search Google Scholar
    • Export Citation
  • 27.

    Sattabongkot J, Maneechai N, Phunkitchar V, Eikarat N, Khuntirat B, Sirichaisinthop J, Burge R, Coleman RE, 2003. Comparison of artificial membrane feeding with direct skin feeding to estimate the infectiousness of Plasmodium vivax gametocyte carriers to mosquitoes. Am J Trop Med Hyg 69: 529535.

    • Search Google Scholar
    • Export Citation
  • 28.

    Bonnet S, Gouagna C, Safeukui I, Meunier JY, Boudin C, 2000. Comparison of artificial membrane feeding with direct skin feeding to estimate infectiousness of Plasmodium falciparum gametocyte carriers to mosquitoes. Trans R Soc Trop Med Hyg 94: 103106.

    • Search Google Scholar
    • Export Citation
  • 29.

    van der Kolk M, De Vlas SJ, Saul A, van de Vegte-Bolmer M, Eling WM, Sauerwein RW, 2005. Evaluation of the standard membrane feeding assay (SMFA) for the determination of malaria transmission-reducing activity using empirical data. Parasitol 130: 1322.

    • Search Google Scholar
    • Export Citation
  • 30.

    Beier JC, Beier MS, Vaughan JA, Pumpuni CB, Davis JR, Noden BH, 1992. Sporozoite transmission by Anopheles freeborni and Anopheles gambiae experimentally infected with Plasmodium falciparum. J Am Mosq Control Assoc 8: 404408.

    • Search Google Scholar
    • Export Citation
  • 31.

    Beier JC, Onyango FK, Ramadhan M, Koros JK, Asiago CM, Wirtz RA, Koech DK, Roberts CR, 1991. Quantitation of malaria sporozoites in the salivary glands of wild Afrotropical Anopheles. Med Vet Entomol 5: 6370.

    • Search Google Scholar
    • Export Citation
  • 32.

    Beier JC, Onyango FK, Koros JK, Ramadhan M, Ogwang R, Wirtz RA, Koech DK, Roberts CR, 1991. Quantitation of malaria sporozoites transmitted in vitro during salivation by wild Afrotropical Anopheles. Med Vet Entomol 5: 7179.

    • Search Google Scholar
    • Export Citation
  • 33.

    Russell B, Suwanarusk R, Lek-Uthai U, 2006. Plasmodium vivax genetic diversity: microsatellite length matters. Trends Parasitol 22: 399401.

  • 34.

    Imwong M, Nair S, Pukrittayakamee S, Sudimack D, Williams JT, Mayxay M, Newton PN, Kim JR, Nandy A, Osorio L, Carlton JM, White NJ, Day NP, Anderson TJ, 2007. Contrasting genetic structure in Plasmodium vivax populations from Asia and South America. Int J Parasitol 37: 10131022.

    • Search Google Scholar
    • Export Citation
  • 35.

    Karunaweera ND, Ferreira MU, Munasinghe A, Barnwell JW, Collins WE, King CL, Kawamoto F, Hartl DL, Wirth DF, 2008. Extensive microsatellite diversity in the human malaria parasite Plasmodium vivax. Gene 410: 105112.

    • Search Google Scholar
    • Export Citation
  • 36.

    Bozdech Z, Mok S, Hu G, Imwong M, Jaidee A, Russell B, Ginsburg H, Nosten F, Day NP, White NJ, Carlton JM, Preiser PR, 2008. The transcriptome of Plasmodium vivax reveals divergence and diversity of transcriptional regulation in malaria parasites. Proc Natl Acad Sci USA 105: 1629016295.

    • Search Google Scholar
    • Export Citation
  • 37.

    Kim JR, Imwong M, Nandy A, Chotivanich K, Nontprasert A, Tonomsing N, Maji A, Addy M, Day NP, White NJ, Pukrittayakamee S, 2006. Genetic diversity of Plasmodium vivax in Kolkata, India. Malar J 5: 71.

    • Search Google Scholar
    • Export Citation
  • 38.

    Ferreira MU, Karunaweera ND, da Silva-Nunes M, da Silva NS, Wirth DF, Hartl DL, 2007. Population structure and transmission dynamics of Plasmodium vivax in rural Amazonia. J Infect Dis 195: 12181226.

    • Search Google Scholar
    • Export Citation
  • 39.

    Kasehagen LJ, Mueller I, Kiniboro B, Bockarie MJ, Reeder JC, Kazura JW, Kastens W, McNamara DT, King CH, Whalen CC, Zimmerman PA, 2007. Reduced Plasmodium vivax erythrocyte infection in PNG Duffy-negative heterozygotes. PLoS ONE 2: e336.

    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 7 7 7
Full Text Views 340 154 1
PDF Downloads 100 39 0
 
 
 
 
 
 
 
 
 
 
 

Consistent Safety and Infectivity in Sporozoite Challenge Model of Plasmodium vivax in Malaria-Naive Human Volunteers

Sócrates HerreraInstituto de Inmunología, Universidad del Valle, Cali, Colombia; Malaria Vaccine and Drug Development Center, Cali, Colombia; Division of Infectious Diseases, Federal University of São Paulo, Brazil; Fundación Clínica Valle del Lili Cali, Colombia; U.S. Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland

Search for other papers by Sócrates Herrera in
Current site
Google Scholar
PubMed
Close
,
Yezid SolarteInstituto de Inmunología, Universidad del Valle, Cali, Colombia; Malaria Vaccine and Drug Development Center, Cali, Colombia; Division of Infectious Diseases, Federal University of São Paulo, Brazil; Fundación Clínica Valle del Lili Cali, Colombia; U.S. Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland

Search for other papers by Yezid Solarte in
Current site
Google Scholar
PubMed
Close
,
Alejandro Jordán-VillegasInstituto de Inmunología, Universidad del Valle, Cali, Colombia; Malaria Vaccine and Drug Development Center, Cali, Colombia; Division of Infectious Diseases, Federal University of São Paulo, Brazil; Fundación Clínica Valle del Lili Cali, Colombia; U.S. Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland

Search for other papers by Alejandro Jordán-Villegas in
Current site
Google Scholar
PubMed
Close
,
Juan Fernando EchavarríaInstituto de Inmunología, Universidad del Valle, Cali, Colombia; Malaria Vaccine and Drug Development Center, Cali, Colombia; Division of Infectious Diseases, Federal University of São Paulo, Brazil; Fundación Clínica Valle del Lili Cali, Colombia; U.S. Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland

Search for other papers by Juan Fernando Echavarría in
Current site
Google Scholar
PubMed
Close
,
Leonardo RochaInstituto de Inmunología, Universidad del Valle, Cali, Colombia; Malaria Vaccine and Drug Development Center, Cali, Colombia; Division of Infectious Diseases, Federal University of São Paulo, Brazil; Fundación Clínica Valle del Lili Cali, Colombia; U.S. Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland

Search for other papers by Leonardo Rocha in
Current site
Google Scholar
PubMed
Close
,
Ricardo PalaciosInstituto de Inmunología, Universidad del Valle, Cali, Colombia; Malaria Vaccine and Drug Development Center, Cali, Colombia; Division of Infectious Diseases, Federal University of São Paulo, Brazil; Fundación Clínica Valle del Lili Cali, Colombia; U.S. Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland

Search for other papers by Ricardo Palacios in
Current site
Google Scholar
PubMed
Close
,
Óscar RamírezInstituto de Inmunología, Universidad del Valle, Cali, Colombia; Malaria Vaccine and Drug Development Center, Cali, Colombia; Division of Infectious Diseases, Federal University of São Paulo, Brazil; Fundación Clínica Valle del Lili Cali, Colombia; U.S. Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland

Search for other papers by Óscar Ramírez in
Current site
Google Scholar
PubMed
Close
,
Juan D. VélezInstituto de Inmunología, Universidad del Valle, Cali, Colombia; Malaria Vaccine and Drug Development Center, Cali, Colombia; Division of Infectious Diseases, Federal University of São Paulo, Brazil; Fundación Clínica Valle del Lili Cali, Colombia; U.S. Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland

Search for other papers by Juan D. Vélez in
Current site
Google Scholar
PubMed
Close
,
Judith E. EpsteinInstituto de Inmunología, Universidad del Valle, Cali, Colombia; Malaria Vaccine and Drug Development Center, Cali, Colombia; Division of Infectious Diseases, Federal University of São Paulo, Brazil; Fundación Clínica Valle del Lili Cali, Colombia; U.S. Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland

Search for other papers by Judith E. Epstein in
Current site
Google Scholar
PubMed
Close
,
Thomas L. RichieInstituto de Inmunología, Universidad del Valle, Cali, Colombia; Malaria Vaccine and Drug Development Center, Cali, Colombia; Division of Infectious Diseases, Federal University of São Paulo, Brazil; Fundación Clínica Valle del Lili Cali, Colombia; U.S. Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland

Search for other papers by Thomas L. Richie in
Current site
Google Scholar
PubMed
Close
, and
Myriam Arévalo-HerreraInstituto de Inmunología, Universidad del Valle, Cali, Colombia; Malaria Vaccine and Drug Development Center, Cali, Colombia; Division of Infectious Diseases, Federal University of São Paulo, Brazil; Fundación Clínica Valle del Lili Cali, Colombia; U.S. Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland

Search for other papers by Myriam Arévalo-Herrera in
Current site
Google Scholar
PubMed
Close
View More View Less
Restricted access

A safe and reproducible Plasmodium vivax infectious challenge method is required to evaluate the efficacy of malaria vaccine candidates. Seventeen healthy Duffy (+) and five Duffy (−) subjects were randomly allocated into three (A–C) groups and were exposed to the bites of 2–4 Anopheles albimanus mosquitoes infected with Plasmodium vivax derived from three donors. Duffy (−) subjects were included as controls for each group. Clinical manifestations of malaria and parasitemia were monitored beginning 7 days post-challenge. All Duffy (+) volunteers developed patent malaria infection within 16 days after challenge. Prepatent period determined by thick smear, was longer for Group A (median 14.5 d) than for Groups B and C (median 10 d/each). Infected volunteers recovered rapidly after treatment with no serious adverse events. The bite of as low as two P. vivax-infected mosquitoes provides safe and reliable infections in malaria-naive volunteers, suitable for assessing antimalarial and vaccine efficacy trials.

Author Notes

*Address correspondence to Sócrates Herrera, Malaria Vaccine and Drug Development Center, Carrera 37 - 2Bis No. 5E - 08, Cali, Colombia. E-mail: sherrera@inmuno.org

Financial support: This work was supported by World Health Organization Initiative for Vaccine Research (grant no. LA35735G), National Institute of Allergy and Infectious Diseases (NIAID grant no. 49486/TMRC), Colombian National Research Council, COLCIENCIAS and the Ministry for Social Protection (contract nos. 253-2005 and 207-2007), and the Malaria Vaccine and Drug Development Center Foundation.

Disclosure: Thomas L. Richie and Judith E. Epstein are service members in the U.S. Navy. This work was prepared as part of their official duties. Title 17 U.S.C. §105 provides that “Copyright protection under this title is not available for any work of the United States Government.” Title 17 U.S.C. §101 defines a U.S. Government work as a work prepared by a military member or employee of the U.S. Government as part of that person's official duties. The contribution of U.S. Navy staff was supported by Work Unit Number 6000.RAD1.F.A309.

Authors' addresses: Sócrates Herrera, Yezid Solarte, Alejandro Jordán-Villegas, Juan Fernando Echavarría, Leonardo Rocha, and Myriam Arévalo-Herrera, Instituto de Inmunología, Edificio de Microbiología, Facultad de Salud, Universidad del Valle and Centro Internacional de Vacunas, Cali, Colombia, E-mails: sherrera@inmuno.org, ysolarte@inmuno.org, alejovi@hotmail.com, jechavarria@inmuno.org, lrocha94@yahoo.com, and marevalo@inmuno.org. Ricardo Palacios, Division of Infectious Diseases, Federal University of São Paulo, Brazil, E-mail: ricardopalacios@gmx.net. Óscar Ramírez and Juan D. Vélez, Fundación Clínica Valle del Lili, Cali, Colombia, E-mails: oramirez@fcvl.org and jdvelez@telesat.com.co. Judith E. Epstein and Thomas L. Richie, Malaria Program, Naval Medical Research Center, Silver Spring, MD, E-mails: Judith.Epstein@med.navy.mil and Thomas.Richie@med.navy.mil.

Reprint requests: Sócrates Herrera, Malaria Vaccine and Drug Development Center, Carrera 37 - 2Bis No. 5E - 08, Cali, Colombia, E-mail: sherrera@inmuno.org.

Save