• 1.

    World Health Organization, 2008. World Malaria Report. Geneva, Switzerland: World Health Organization.

  • 2.

    Saul A, 2007. Mosquito stage, transmission blocking vaccines for malaria. Curr Opin Infect Dis 20: 476481.

  • 3.

    Gamage-Mendis AC, Rajakaruna J, Carter R, Mendis KN, 1992. Transmission blocking immunity to human Plasmodium vivax malaria in an endemic population in Kataragama, Sri Lanka. Parasite Immunol 14: 385396.

    • Search Google Scholar
    • Export Citation
  • 4.

    Kaslow DC, 1990. Immunogenicity of Plasmodium falciparum sexual stage antigens: implications for the design of a transmission blocking vaccine. Immunol Lett 25: 8386.

    • Search Google Scholar
    • Export Citation
  • 5.

    Vermeulen AN, Ponnudurai T, Beckers PJ, Verhave JP, Smits MA, Meuwissen JH, 1985. Sequential expression of antigens on sexual stages of Plasmodium falciparum accessible to transmission-blocking antibodies in the mosquito. J Exp Med 162: 14601476.

    • Search Google Scholar
    • Export Citation
  • 6.

    Vermeulen AN, Roeffen WF, Henderik JB, Ponnudurai T, Beckers PJ, Meuwissen JH, 1985. Plasmodium falciparum transmission blocking monoclonal antibodies recognize monovalently expressed epitopes. Dev Biol Stand 62: 9197.

    • Search Google Scholar
    • Export Citation
  • 7.

    Hisaeda H, Stowers AW, Tsuboi T, Collins WE, Sattabongkot JS, Suwanabun N, Torii M, Kaslow DC, 2000. Antibodies to malaria vaccine candidates Pvs25 and Pvs28 completely block the ability of Plasmodium vivax to infect mosquitoes. Infect Immun 68: 66186623.

    • Search Google Scholar
    • Export Citation
  • 8.

    Duffy PE, Kaslow DC, 1997. A novel malaria protein, Pfs28, and Pfs25 are genetically linked and synergistic as falciparum malaria transmission-blocking vaccines. Infect Immun 65: 11091113.

    • Search Google Scholar
    • Export Citation
  • 9.

    Duffy PE, Pimenta P, Kaslow DC, 1993. Pgs28 belongs to a family of epidermal growth factor-like antigens that are targets of malaria transmission-blocking antibodies. J Exp Med 177: 505510.

    • Search Google Scholar
    • Export Citation
  • 10.

    Barr PJ, Green KM, Gibson HL, Bathurst IC, Quakyi IA, Kaslow DC, 1991. Recombinant Pfs25 protein of Plasmodium falciparum elicits malaria transmission-blocking immunity in experimental animals. J Exp Med 174: 12031208.

    • Search Google Scholar
    • Export Citation
  • 11.

    Kaslow DC, Isaacs SN, Quakyi IA, Gwadz RW, Moss B, Keister DB, 1991. Induction of Plasmodium falciparum transmission-blocking antibodies by recombinant vaccinia virus. Science 252: 13101313.

    • Search Google Scholar
    • Export Citation
  • 12.

    Baton LA, Ranford-Cartwright LC, 2005. Spreading the seeds of million-murdering death: metamorphoses of malaria in the mosquito. Trends Parasitol 21: 573580.

    • Search Google Scholar
    • Export Citation
  • 13.

    Poudel SS, Newman RA, Vaughan JA, 2008. Rodent Plasmodium: population dynamics of early sporogony within Anopheles stephensi mosquitoes. J Parasitol 94: 9991008.

    • Search Google Scholar
    • Export Citation
  • 14.

    Zollner GE, Ponsa N, Garman GW, Poudel S, Bell JA, Sattabongkot J, Coleman RE, Vaughan JA, 2006. Population dynamics of sporogony for Plasmodium vivax parasites from western Thailand developing within three species of colonized Anopheles mosquitoes. Malar J 5: 68.

    • Search Google Scholar
    • Export Citation
  • 15.

    Sinden RE, Billingsley PF, 2001. Plasmodium invasion of mosquito cells: hawk or dove? Trends Parasitol 17: 209212.

  • 16.

    Carter R, Chen DH, 1976. Malaria transmission blocked by immunisation with gametes of the malaria parasite. Nature 263: 5760.

  • 17.

    Gwadz RW, 1976. Successful immunization against the sexual stages of Plasmodium gallinaceum. Science 193: 11501151.

  • 18.

    Lavazec C, Bourgouin C, 2008. Mosquito-based transmission blocking vaccines for interrupting Plasmodium development. Microbes Infect 10: 845849.

    • Search Google Scholar
    • Export Citation
  • 19.

    Dinglasan RR, Alaganan A, Ghosh AK, Saito A, van Kuppevelt TH, Jacobs-Lorena M, 2007. Plasmodium falciparum ookinetes require mosquito midgut chondroitin sulfate proteoglycans for cell invasion. Proc Natl Acad Sci USA 104: 1588215887.

    • Search Google Scholar
    • Export Citation
  • 20.

    Ghosh AK, Dinglasan RR, Ikadai H, Jacobs-Lorena M, 2010. An improved method for the in vitro differentiation of Plasmodium falciparum gametocytes into ookinetes. Malar J 9: 194.

    • Search Google Scholar
    • Export Citation
  • 21.

    Warburg A, Miller LH, 1992. Sporogonic development of a malaria parasite in vitro. Science 255: 448450.

  • 22.

    Hurd H, Al-Olayan E, Butcher GA, 2003. In vitro methods for culturing vertebrate and mosquito stages of Plasmodium. Microbes Infect 5: 321327.

    • Search Google Scholar
    • Export Citation
  • 23.

    Carter E, Suhrbier A, Beckers P, Sinden R, 1987. The in vitro cultivation of Plasmodium falciparum ookinetes, and their enrichment of Nycodenz density gradients. Parasitology 95: 2530.

    • Search Google Scholar
    • Export Citation
  • 24.

    Ono T, Nakabayashi T, 1989. Gametocytogenesis induction in cultured Plasmodium falciparum and further development of the gametocytes to ookinetes in prolonged culture. Parasitol Res 75: 348352.

    • Search Google Scholar
    • Export Citation
  • 25.

    Zhou Y, Ramachandran V, Kumar KA, Westenberger S, Refour P, Zhou B, Li F, Young JA, Chen K, Plouffe D, Henson K, Nussenzweig V, Carlton J, Vinetz JM, Duraisingh MT, Winzeler EA, 2008. Evidence-based annotation of the malaria parasite's genome using comparative expression profiling. PLoS One 3: e1570.

    • Search Google Scholar
    • Export Citation
  • 26.

    Read M, Hyde JE, 1993. Simple in vitro cultivation of the malaria parasite Plasmodium falciparum (erythrocytic stages) suitable for large-scale preparations. Methods Mol Biol 21: 4355.

    • Search Google Scholar
    • Export Citation
  • 27.

    Ifediba T, Vanderberg JP, 1981. Complete in vitro maturation of Plasmodium falciparum gametocytes. Nature 294: 364366.

  • 28.

    Looker BW, Taylor-Robinson AW, 2004. Cultivation of Plasmodium falciparum gametocytes for mosquito infectivity studies. Ljungstrom HP, Schlichtherle M, Scherf A, Wahlgren A, eds. Methods in Malaria Research, 4th ed. Manassas, VA: MR4/ATCC, 9699. Available at: http://www.mr4.org/Portals/3/Pdfs/ProtocolBook/Methods_in_malaria_research.pdf. Accessed October 15, 2010.

    • Search Google Scholar
    • Export Citation
  • 29.

    Graves PM, Carter R, McNeill KM, 1984. Gametocyte production in cloned lines of Plasmodium falciparum. Am J Trop Med Hyg 33: 10451050.

  • 30.

    Carter R, Ranford-Cartwright L, Alano P, 1993. The culture and preparation of gametocytes of Plasmodium falciparum for immunochemical, molecular, and mosquito infectivity studies. Methods Mol Biol 21: 6788.

    • Search Google Scholar
    • Export Citation
  • 31.

    Ghosh AK, Dinglasan RR, Ikadai H, Jacobs-Lorena MMJ, 2010. An improved method for the in vitro differentiation of Plasmodium falciparum gametocytes into ookinetes. Malar J 9: 194.

    • Search Google Scholar
    • Export Citation
  • 32.

    Fivelman QL, McRobert L, Sharp S, Taylor CJ, Saeed M, Swales CA, Sutherland CJ, Baker DA, 2007. Improved synchronous production of Plasmodium falciparum gametocytes in vitro. Mol Biochem Parasitol 154: 119123.

    • Search Google Scholar
    • Export Citation
  • 33.

    Vermeulen AN, Ponnudurai T, Beckers PJ, Verhave JP, Smits MA, Meuwissen JH, 1985. Sequential expression of antigens on sexual stages of Plasmodium falciparum accessible to transmission-blocking antibodies in the mosquito. J Exp Med 162: 14601476.

    • Search Google Scholar
    • Export Citation
  • 34.

    Vermeulen AN, Ponnudurai T, Lensen AH, Roeffen WF, Meuwissen JE, 1983. The purification of Plasmodium falciparum macrogametes and/or zygotes prepared from in vitro cultures. Trans R Soc Trop Med Hyg 77: 753755.

    • Search Google Scholar
    • Export Citation
  • 35.

    Canning EU, Sinden RE, 1973. The organization of the ookinete and observations on nuclear division in oocysts of Plasmodium berghei. Parasitology 67: 2940.

    • Search Google Scholar
    • Export Citation
  • 36.

    Janse CJ, van der Klooster PF, van der Kaay HJ, van der Ploeg M, Overdulve JP, 1986. DNA synthesis in Plasmodium berghei during asexual and sexual development. Mol Biochem Parasitol 20: 173182.

    • Search Google Scholar
    • Export Citation
  • 37.

    Janse CJ, Ponnudurai T, Lensen AH, Meuwissen JH, Ramesar J, Van der Ploeg M, Overdulve JP, 1988. DNA synthesis in gametocytes of Plasmodium falciparum. Parasitology 96: 17.

    • Search Google Scholar
    • Export Citation
  • 38.

    Zhao H, Traganos F, Dobrucki J, Wlodkowic D, Darzynkiewicz Z, 2009. Induction of DNA damage response by the supravital probes of nucleic acids. Cytometry A 75: 510519.

    • Search Google Scholar
    • Export Citation
  • 39.

    Sinden RE, 1983. The cell biology of sexual development in Plasmodium. Parasitology 86: 728.

  • 40.

    Sinden RE, 1983. Sexual development of malarial parasites. Adv Parasitol 22: 154208.

  • 41.

    Sinden RE, Canning EU, Bray RS, Smalley ME, 1978. Gametocyte and gamete development in Plasmodium falciparum. Proc R Soc Lond B Biol Sci 201: 375399.

    • Search Google Scholar
    • Export Citation
  • 42.

    Reininger L, Billker O, Tewari R, Mukhopadhyay A, Fennell C, Dorin-Semblat D, Doerig C, Goldring D, Harmse L, Ranford-Cartwright L, Packer J, Doerig C, 2005. A NIMA-related protein kinase is essential for completion of the sexual cycle of malaria parasites. J Biol Chem 280: 3195731964.

    • Search Google Scholar
    • Export Citation
  • 43.

    Sinden RE, 1985. Gametocytogenesis in Plasmodium spp., and observations on the meiotic division. Ann Soc Belg Med Trop 65 (Suppl 2): 2133.

    • Search Google Scholar
    • Export Citation
  • 44.

    Kaslow D, Shiloach J, 1994. Production, purification and immunogenicity of a malaria transmission-blocking vaccine candidate: TBV25H expressed in yeast and purified using nickel-NTA agarose. Biotechnology 12: 494499.

    • Search Google Scholar
    • Export Citation
  • 45.

    Vinetz JM, Dave SK, Specht CA, Brameld KA, Hayward RE, Fidock DA, 1999. The chitinase PfCHT1 from the human malaria parasite Plasmodium falciparum lacks proenzyme and chitin-binding domains and displays unique substrate preferences. Proc Natl Acad Sci USA 96: 1406114066.

    • Search Google Scholar
    • Export Citation
  • 46.

    Kaslow DC, Quakyi IA, Syin C, Raum MG, Keister DB, Coligan JE, McCutchan TF, Miller LH, 1988. A vaccine candidate from the sexual stage of human malaria that contains EGF-like domains. Nature 333: 7476.

    • Search Google Scholar
    • Export Citation
  • 47.

    Vinetz JM, Valenzuela JG, Specht CA, Aravind L, Langer RC, Ribeiro JM, Kaslow DC, 2000. Chitinases of the avian malaria parasite Plasmodium gallinaceum, a class of enzymes necessary for parasite invasion of the mosquito midgut. J Biol Chem 275: 1033110341.

    • Search Google Scholar
    • Export Citation
  • 48.

    Scholz SM, Simon N, Lavazec C, Dude MA, Templeton TJ, Pradel G, 2008. PfCCp proteins of Plasmodium falciparum: gametocyte-specific expression and role in complement-mediated inhibition of exflagellation. Int J Parasitol 38: 327340.

    • Search Google Scholar
    • Export Citation
  • 49.

    Sinden RE, Winger L, Carter EH, Hartley RH, Tirawanchai N, Davies CS, Moore J, Sluiters JF, 1987. Ookinete antigens of Plasmodium berghei: a light and electron-microscope immunogold study of expression of the 21 kDa determinant recognized by a transmission-blocking antibody. Proc R Soc Lond B Biol Sci 230: 443458.

    • Search Google Scholar
    • Export Citation
  • 50.

    Sinden RE, Hartley RH, Winger L, 1985. The development of Plasmodium ookinetes in vitro: an ultrastructural study including a description of meiotic division. Parasitology 91: 227244.

    • Search Google Scholar
    • Export Citation
  • 51.

    Sinden RE, 1985. A cell biologist's view of host cell recognition and invasion by malarial parasites. Trans R Soc Trop Med Hyg 79: 598605.

    • Search Google Scholar
    • Export Citation
  • 52.

    Sinden RE, Strong K, 1978. An ultrastructural study of the sporogonic development of Plasmodium falciparum in Anopheles gambiae. Trans R Soc Trop Med Hyg 72: 477491.

    • Search Google Scholar
    • Export Citation
  • 53.

    Sinden RE, 1985. Gametocytogenesis in Plasmodium spp., and observations on the meiotic division. Ann Soc Belg Med Trop 65: 2133.

  • 54.

    Sinden RE, Hartley RH, Gametogenesis NJK, 1985. Gametogenesis in Plasmodium; the inhibitory effects of anticytoskeletal agents. Int J Parasitol 15: 211217.

    • Search Google Scholar
    • Export Citation
  • 55.

    Raibaud ALP, Paul REL, Mercati D, Brey PT, Sinden RE, Heuser JE, Dallai R, 2001. Cryofracture electron microscopy of the ookinete pellicle of Plasmodium gallinaceum reveals the existence of novel pores in teh alveolar membranes. J Struct Biol 135: 4757.

    • Search Google Scholar
    • Export Citation
  • 56.

    Bannister LH, Hopkins JM, Dluzewski AR, Margos G, Williams IT, Blackman MJ, Kocken CH, Thomas AW, Mitchell GH, 2003. Plasmodium falciparum apical membrane antigen 1 (PfAMA-1) is translocated within micronemes along subpellicular microtubules during merozoite development. J Cell Sci 116: 38253834.

    • Search Google Scholar
    • Export Citation
  • 57.

    Schrevel J, Asfaux-Foucher G, Hopkins JM, Robert V, Bourgouin C, Prensier G, Bannister LH, 2008. Vesicle trafficking during sporozoite development in Plasmodium berghei: ultrastructural evidence for a novel trafficking mechanism. Parasitology 135: 112.

    • Search Google Scholar
    • Export Citation
  • 58.

    Kaslow DC, Shiloach J, 1994. Production, purification and immunogenicity of a malaria transmission-blocking vaccine candidate: TBV25H expressed in yeast and purified using nickel-NTA agarose. Biotechnology 12: 494499.

    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 14 14 14
Full Text Views 496 227 12
PDF Downloads 210 107 10
 
 
 
 
 
 
 
 
 
 
 

In Vitro Generation of Plasmodium falciparum Ookinetes

Viengngeun BounkeuaDivision of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, California

Search for other papers by Viengngeun Bounkeua in
Current site
Google Scholar
PubMed
Close
,
Fengwu LiDivision of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, California

Search for other papers by Fengwu Li in
Current site
Google Scholar
PubMed
Close
, and
Joseph M. VinetzDivision of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, California

Search for other papers by Joseph M. Vinetz in
Current site
Google Scholar
PubMed
Close
View More View Less
Restricted access

Plasmodium transmission from the human host to the mosquito depends on the ability of gametocytes to differentiate into ookinetes, the invasive form of the parasite that invades and establishes infection in the mosquito midgut. The biology of P. falciparum ookinetes is poorly understood, because sufficient quantities of this stage of this parasite species have not been obtained for detailed study. This report details methods to optimize production of P. falciparum sexual stage parasites, including ookinetes. Flow cytometric sorting was used to separate diploid/tetraploid zygotes and ookinetes from haploid gametetocytes and unfertilized gametes based on DNA content. Consistent production of 106–107 P. falciparum ookinetes per 10 mL culture was observed, with ookinete transformation present in 10–40% of all parasite forms. Transmission electron micrographs of cultured parasites confirmed ookinete development.

Author Notes

*Address correspondence to Joseph M. Vinetz, Division of Infectious Diseases, Department of Medicine, University of California San Diego, 9500 Gilman Drive, George Palade Laboratories Room 125, La Jolla, CA 92093-0741. E-mail: jvinetz@ucsd.edu
†These authors contributed equally.

Authors' addresses: Viengngeun Bounkeua, Fengwu Li, and Joseph M. Vinetz, Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, CA.

Save