• 1.

    Jennifer LK, Harris E, 2008. Global spread and persistence of dengue. Annu Rev Microbiol 62: 7192.

  • 2.

    Gubler DJ, 1998. Dengue and dengue hemorrhagic fever. Clin Microbiol Rev 11: 480496.

  • 3.

    World Health Organization, 2007. TDR Report of Dengue Scientific Working Group. TDR/SWG/08, Geneva. Available at: http://www.who.int/tdr/publications/publications/swg_dengue_2.htm. Accessed July 2008.

    • Search Google Scholar
    • Export Citation
  • 4.

    Gubler DJ, 2006. Dengue/dengue haemorrhagic fever: history and current status. Novartis Found Symp 277: 316; discussion 16–22, 71–73, 251–253.

    • Search Google Scholar
    • Export Citation
  • 5.

    Myat Thu H, Lowry K, Jiang L, Hlaing T, Holmes EC, Aaskov J, 2005. Lineage extinction and replacement in dengue type 1 virus populations are due to stochastic events rather than to natural selection. Virology 336: 163172.

    • Search Google Scholar
    • Export Citation
  • 6.

    Zhang C, Mammen MP Jr, Chinnawirotpisan P, Klungthong C, Rodpradit P, Monkongdee P, Nimmannitya S, Kalayanarooj S, Holmes EC, 2005. Clade replacements in dengue virus serotypes 1 and 3 are associated with changing serotype prevalence. J Virol 79: 1512315130.

    • Search Google Scholar
    • Export Citation
  • 7.

    Domingo E, Holland JJ, 1994. Mutation rates and rapid evolution of RNA viruses. Morse SS, ed. The Evolutionary Biology of Viruses. New York: Raven Press, 161184.

    • Search Google Scholar
    • Export Citation
  • 8.

    Drakes JW, Holland JJ, 1999. Mutation rates among RNA viruses. Proc Natl Acad Sci USA 96: 1391013913.

  • 9.

    Adams B, Holmes EC, Zhang C, Mammen MP Jr, Nimmannitya S, Kalayanarooj S, Boots M, 2006. Cross-protective immunity can account for the alternating epidemic pattern of dengue virus serotypes circulating in Bangkok. Proc Natl Acad Sci USA 103: 1423414239.

    • Search Google Scholar
    • Export Citation
  • 10.

    Nisalak A, Endy TP, Nimmannitya S, Kalayanarooj S, Thisayakorn U, Scott RM, Burke DS, Hoke CH, Innis BL, Vaughn DW, 2003. Serotype-specific dengue virus circulation and dengue disease in Bangkok, Thailand from 1973 to 1999. Am J Trop Med Hyg 68: 191202.

    • Search Google Scholar
    • Export Citation
  • 11.

    Halstead SB, Scanlon JE, Umpaivit P, Udomsakdi S, 1969. Dengue and chikungunya virus infection in man in Thailand, 1962–1964. IV. Epidemiologic studies in the Bangkok metropolitan area. Am J Trop Med Hyg 18: 9971021.

    • Search Google Scholar
    • Export Citation
  • 12.

    Nimmannitya SHS, Cohen S, Margiontta MR, 1969. Dengue and chikungunya virus infection in man in Thailand, 1962–1964. I. Observation on hospitalized patients with hemorrhagic fever. Am J Trop Med Hyg 18: 954971.

    • Search Google Scholar
    • Export Citation
  • 13.

    Halstead SB, Udomsakdi S, Scanlon JE, Rohitayodhin S, 1969. Dengue and chikungunya virus infection in man in Thailand, 1962–1964. V. Epidemiologic observations outside Bangkok. Am J Trop Med Hyg 18: 10221033.

    • Search Google Scholar
    • Export Citation
  • 14.

    Klungthong C, Zhang C, Mammen MP Jr, Ubol S, Holmes EC, 2004. The molecular epidemiology of dengue virus serotype 4 in Bangkok, Thailand. Virology 329: 168179.

    • Search Google Scholar
    • Export Citation
  • 15.

    Zhang C, Mammen MP Jr, Chinnawirotpisan P, Klungthong C, Rodpradit P, Nisalak A, Vaughn DW, Nimmannitya S, Kalayanarooj S, Holmes EC, 2006. Structure and age of genetic diversity of dengue virus type 2 in Thailand. J Gen Virol 87: 873883.

    • Search Google Scholar
    • Export Citation
  • 16.

    Zhao R, Chinnawirotpisan P, Klungthong C, Zhang C, Putnak R, 2010. Evidence for inter- and intra-genotypic variations in dengue type 4 viruses representing predominant and non-predominant genitypes co-circulating in Thailand from 1997 to 2001. Virus Genes 41: 513.

    • Search Google Scholar
    • Export Citation
  • 17.

    Holmes EC, 2003. Patterns of intra- and interhost nonsynonymous variation reveal strong purifying selection in dengue virus. J Virol 77: 1129611298.

    • Search Google Scholar
    • Export Citation
  • 18.

    Markoff L, 2003. 5′- and 3′-noncoding regions in flavivirus RNA. Adv Virus Res 59: 177228.

  • 19.

    Zhou Y, Mammen MP Jr, Klungthong C, Chinnawirotpisan P, Vaughn DW, Nimmannitya S, Kalayanarooj S, Holmes EC, Zhang C, 2006. Comparative analysis reveals no consistent association between the secondary structure of the 3′-untranslated region of dengue viruses and disease syndrome. J Gen Virol 87: 25952603.

    • Search Google Scholar
    • Export Citation
  • 20.

    Zuo Z, Liew OW, Chen G, Chong PC, Lee SH, Chen K, Jiang H, Puah CM, Zhu W, 2009. Mechanism of NS2B-mediated activation of NS3pro in dengue virus: molecular dynamics simulations and bioassays. J Virol 83: 10601070.

    • Search Google Scholar
    • Export Citation
  • 21.

    Hasegawa H, Yoshida M, Shiosaka T, Fujita S, Kobayashi Y, 1992. Mutations in the envelope protein of Japanese encephalitis virus affect entry into cultured cells and virulence in mice. Virology 191: 158165.

    • Search Google Scholar
    • Export Citation
  • 22.

    Jiang WR, Lowe A, Reid S, Could EA, 1993. Single amino acid codon changes in louping ill virus antibody-resistant mutants with reduced neurovirulence. J Gen Virol 74: 931935.

    • Search Google Scholar
    • Export Citation
  • 23.

    Mandl CW, Guirakhoo F, Holzmann H, Heinz FX, Kunz C, 1989. Antigenic structure of the flavivirus envelop protein E at the molecular level, using tick-bone encephalitis virus as a model. J Virol 63: 564571.

    • Search Google Scholar
    • Export Citation
  • 24.

    Leitmeyer KC, Vaughn DW, Watts DM, Salas R, Villalobos I, Chacon de, Ramos C, Rico-Hesse R, 1999. Dengue virus structural differences that correlate with pathogenesis. J Virol 73: 47384747.

    • Search Google Scholar
    • Export Citation
  • 25.

    Bulich R, Aaskov JG, 1992. Nuclear localization of dengue 2 virus core protein detected with monoclonal antibodies. J Gen Virol 73: 29993003.

    • Search Google Scholar
    • Export Citation
  • 26.

    Makino Y, Tadano M, Anzai T, Ma SP, Yasuda S, Fukunaga T, 1989. Detection of dengue 4 virus core protein in the nucleus. II. Antibody against dengue 4 core protein produced by a recombinant baculovirus reacts with the antigen in the nucleus. J Gen Virol 70: 14171425.

    • Search Google Scholar
    • Export Citation
  • 27.

    Tadano M, Makino Y, Fukunaga T, Okuno Y, Fukai K, 1989. Detection of dengue 4 virus core protein in the nucleus. I. A monoclonal antibody to dengue 4 virus reacts with the antigen in the nucleus and cytoplasm. J Gen Virol 70: 14091415.

    • Search Google Scholar
    • Export Citation
  • 28.

    Sangiambut S, Keelapang P, Aaskov J, Puttikhunt C, Kasinrerk W, Malasit P, Sittisombut N, 2008. Multiple regions in dengue virus capsid protein contribute to nuclear localization during virus infection. J Gen Virol 89: 12541264.

    • Search Google Scholar
    • Export Citation
  • 29.

    Hsieh TY, Matsumoto M, Chou H. C, Schneider R, Hwang S. B, Lee AS, Lai MM, 1998. Hepatitis C virus core protein interacts with heterogeneous nuclear ribonucleoprotein K. J Biol Chem 273: 1765117659.

    • Search Google Scholar
    • Export Citation
  • 30.

    Chang CJ, Luh HW, Wang SH, Lin HJ, Lee SC, Hu ST, 2001. The heterogeneous nuclear ribonucleoprotein K (hnRNP K) interacts with dengue virus core protein. DNA Cell Biol 20: 569577.

    • Search Google Scholar
    • Export Citation
  • 31.

    Michelotti EF, Michelotti GA, Aronsohn AI, Levens D, 1996. Heterogeneous nuclear ribonucleoprotein K is a transcription factor. Mol Cell Biol 16: 23502360.

    • Search Google Scholar
    • Export Citation
  • 32.

    Prendergast GC, 1999. Mechanism of apoptosis by c-Myc. Oncogene 18: 29672987.

  • 33.

    Lee E, Weir RC, Dalgarno L, 1997. Changes in the dengue virus major envelope protein on passaging and their localization on the three-dimensional structure of the protein. Virology 232: 281290.

    • Search Google Scholar
    • Export Citation
  • 34.

    Nayak V, Dessau M, Kucera K, Anthony K, Ledizet M, Modis Y, 2009. Crystal structure of dengue virus type 1 envelope protein in the postfusion conformation and its implications for membrane fusion. J Virol 83: 43384344.

    • Search Google Scholar
    • Export Citation
  • 35.

    Twiddy SS, Woelk CH, Holmes EC, 2002. Phylogenetic evidence for adaptive evolution of dengue viruses in nature. J Gen Virol 83: 16791689.

  • 36.

    Wengler G, Czaya G, Farber PM, Hegemann JH, 1991. In vitro synthesis of West Nile virus proteins indicates that the amino-terminal segment of the NS3 protein contains the active centre of the protease which cleaves the viral polyprotein after multiple basic amino acids. J Gen Virol 72: 851858.

    • Search Google Scholar
    • Export Citation
  • 37.

    Chambers TJ, Nestorowicz A, Amberg SM, Rice CM, 1993. Mutagenesis of the yellow fever virus NS2B protein: effects on proteolytic processing, NS2B-NS3 complex formation, and viral replication. J Virol 67: 67976807.

    • Search Google Scholar
    • Export Citation
  • 38.

    Li H, Clum S, You S, Ebner KE, Padmanabhan R, 1999. The serine protease and RNA-stimulated nucleoside triphosphatase and RNA helicase functional domains of dengue virus type 2 NS3 converge within a region of 20 amino acids. J Virol 73: 31083116.

    • Search Google Scholar
    • Export Citation
  • 39.

    Yusof R, Clum S, Wetzel M, Murthy HM, Padmanabhan R, 2000. Purified NS2B/NS3 serine protease of dengue virus type 2 exhibits cofactor NS2B dependence for cleavage of substrates with dibasic amino acids in vitro. J Biol Chem 275: 99639969.

    • Search Google Scholar
    • Export Citation
  • 40.

    Bartelma G, Padmanabhan R, 2002. Expression, purification, and characterization of the RNA 5′-triphosphatase activity of dengue virus type 2 nonstructural protein 3. Virology 299: 122132.

    • Search Google Scholar
    • Export Citation
  • 41.

    Benarroch D, Selisko B, Locatelli GA, Maga G, Romette JL, Canard B, 2004. The RNA helicase, nucleotide 5′-triphosphatase, and RNA 5′-triphosphatase activities of Dengue virus protein NS3 are Mg2+-dependent and require a functional Walker B motif in the helicase catalytic core. Virology 328: 208218.

    • Search Google Scholar
    • Export Citation
  • 42.

    Walker JE, Saraste M, Runswick MJ, Gay NJ, 1982. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1: 945951.

    • Search Google Scholar
    • Export Citation
  • 43.

    Singleton MR, Wigley DB, 2002. Modularity and specialization in superfamily 1 and 2 helicases. J Bacteriol 184: 18191826.

  • 44.

    Sampath A, Xu T, Chao A, Luo D, Lescar J, Vasudevan SG, 2006. Structure-based mutational analysis of the NS3 helicase from dengue virus. J Virol 80: 66866690.

    • Search Google Scholar
    • Export Citation
  • 45.

    Roosendaal J, Westaway EG, Khromykh A, Mackenzie JM, 2006. Regulated cleavages at the West Nile virus NS4A-2K-NS4B junctions play a major role in rearranging cytoplasmic membranes and golgi trafficking of the NS4A protein. J Virol 80: 46234632.

    • Search Google Scholar
    • Export Citation
  • 46.

    Brooks AJ, Johansson M, John AV, Xu Y, Jans DA, Vasudevan SG, 2002. The interdomain region of dengue NS5 protein that binds to the viral helicase NS3 contains independently functional importin beta 1 and importin alpha/beta-recognized nuclear localization signals. J Biol Chem 277: 3639936407.

    • Search Google Scholar
    • Export Citation
  • 47.

    Kapoor M, Zhang L, Ramachandra M, Kusukawa J, Ebner KE, Padmanabhan R, 1995. Association between NS3 and NS5 proteins of dengue virus type 2 in the putative RNA replicase is linked to differential phosphorylation of NS5. J Biol Chem 270: 1910019106.

    • Search Google Scholar
    • Export Citation
  • 48.

    Yap TL, Xu T, Chen YL, Malet H, Egloff MP, Canard B, Vasudevan SG, Lescar J, 2007. Crystal structure of the dengue virus RNA-dependent RNA polymerase catalytic domain at 1.85-angstrom resolution. J Virol 81: 47534765.

    • Search Google Scholar
    • Export Citation
  • 49.

    Medin CL, Fitzgerald KA, Rothman AL, 2005. Dengue virus nonstructural protein NS5 induces interleukin-8 transcription and secretion. J Virol 79: 1105311061.

    • Search Google Scholar
    • Export Citation
  • 50.

    Khabar KSA-ZF, Al-Ahdal MN, Murayama T, Dhalla M, Mukaida N, Taha M, Al-Sedairy ST, Siddiqui Y, Kessie G, Matsushima K, 1997. The alpha chemokine, interleukin 8, inhibits the antiviral action of interferon alpha. J Exp Med 186: 10771085.

    • Search Google Scholar
    • Export Citation
  • 51.

    Pryor MJ, Rawlinson SM, Butcher RE, Barton CL, Waterhouse TA, Vasudevan SG, Bardin PG, Wright PJ, Jans DA, Davidson AD, 2007. Nuclear localization of dengue virus nonstructural protein 5 through its importin alpha/beta-recognized nuclear localization sequences is integral to viral infection. Traffic 8: 795807.

    • Search Google Scholar
    • Export Citation
  • 52.

    Chambers TJ, McCourt DW, Rice CM, 1989. Yellow fever virus proteins NS2A, NS2B, and NS4B: identification and partial N-terminal amino acid sequence analysis. Virology 169: 100109.

    • Search Google Scholar
    • Export Citation
  • 53.

    Kümmerer B, Rice CM, 2002. Mutations in yellow fever virus nonstructural protein NS2A selectively block production of infectious particles. J Virol 76: 47734784.

    • Search Google Scholar
    • Export Citation
  • 54.

    Leung JY, Pijlman GP, Kondratieva N, Hyde J, Mackenzie JM, Khromykh AA, 2008. Role of nonstructural protein NS2A in flavivirus assembly. J Virol 82: 47314741.

    • Search Google Scholar
    • Export Citation
  • 55.

    Munoz-Jordan JL, Laurent-Rolle M, Ashour J, Martinez-Sobrido L, Ashok M, Lipkin WI, Garcia-Sastre A, 2005. Inhibition of alpha/beta interferon signaling by the NS4B protein of flaviviruses. J Virol 79: 80048013.

    • Search Google Scholar
    • Export Citation
  • 56.

    Munoz-Jordan JL, Sanchez-Burgos GG, Laurent-Rolle M, Garcia-Sastre A, 2003. Inhibition of interferon signaling by dengue virus. Proc Natl Acad Sci USA 100: 1433314338.

    • Search Google Scholar
    • Export Citation
  • 57.

    Umareddy I, Chao A, Sampath A, Gu F, Vasudevan SG, 2006. Dengue virus NS4B interacts with NS3 and dissociates it from single-stranded RNA. J Gen Virol 87: 26052614.

    • Search Google Scholar
    • Export Citation
  • 58.

    Jones M, Davidson A, Hibbert L, Gruenwald P, Schlaak J, Ball S, Foster GR, Jacobs M, 2005. Dengue virus inhibits alpha interferon signaling by reducing STAT2 expression. J Virol 79: 54145420.

    • Search Google Scholar
    • Export Citation
  • 59.

    Miller S, Kastner S, Krijnse-Locker J, Buhler S, Bartenschlager R, 2007. The non-structural protein 4A of dengue virus is an integral membrane protein inducing membrane alterations in a 2K-regulated manner. J Biol Chem 282: 88738882.

    • Search Google Scholar
    • Export Citation
  • 60.

    Lindenbach BD, Rice CM, 1999. Genetic interaction of flavivirus nonstructural proteins NS1 and NS4A as a determinant of replicase function. J Virol 73: 46114621.

    • Search Google Scholar
    • Export Citation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Comparative Analysis of Full-Length Genomic Sequences of 10 Dengue Serotype 1 Viruses Associated with Different Genotypes, Epidemics, and Disease Severity Isolated in Thailand over 22 Years

View More View Less
  • Division of Viral Diseases, Walter Reed Army Institute of Research, Silver Spring, Maryland; Department of Virology, U.S. Army Medical Component-Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
Restricted access

Comparative sequence analysis was performed on the full-length genomic sequences of 10 representative dengue virus serotype 1 (DENV-1) strains sampled from patients at Children's Hospital, Bangkok, Thailand over a 22-year period, which represented different epidemics, disease severity, and sampling time. The results showed remarkable inter-genotypic variation between predominant and non-predominant genotypes and genotype-specific amino acids and nucleotides throughout the entire viral genome except for the 5′-non-translated region. The frequency of intra-genotypic variation was correlated with dengue transmission rate and sampling time. The 5′-non-translated region of all 10 viruses was highly conserved for predominant and non-predominant genotypes and NS2B was the most conserved protein. Some intra-genotypic substitutions of amino acids and nucleotides in predominant genotype strains were fixed in the viral genome since 1994, which indicated that the evolution of predominant genotype strains in situ over time might contribute to increased virus fitness important for sustaining dengue epidemics in Thailand.

Author Notes

*Address correspondence to Chunlin Zhang, Division of Viral Diseases, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Room #A12, Silver Spring, MD 20910. E-mail: chunlin.zhang@amedd.army.mil
†These authors have contributed equally to this study.

Financial: This study was supported by the U.S. Military Infectious Diseases Research Program of the U.S. Department of Defense, Fort Detrick, Maryland.

Authors' addresses: Yuxin Tang, Tao Li, Julia A. Lynch, and Robert Putnak, Division of Viral Diseases, Walter Reed Army Institute of Research, Silver Spring, MD. Prinyada Rodpradit, Piyawan Chinnawirotpisan, and Mammen P. Mammen Jr., Department of Virology, U.S. Army Medical Component–Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand. Chunlin Zhang, Division of Viral Diseases, Walter Reed Army Institute of Research, Silver Spring, MD and Department of Virology, U.S. Army Medical Component–Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand.

Save