• 1.

    Schofield CJ, Jannin J, Salvatella R, 2006. The future of Chagas disease control. Trends Parasitol 22: 583588.

  • 2.

    Ryckman R, 1981. The kissing bug problem in western North America. Bulletin of the Society of Vector Ecologists 6: 3.

  • 3.

    Klotz SA, Dorn PL, Klotz JH, Pinnas JL, Weirauch C, Kurtz JR, Schmidt J, 2009. Feeding behavior of triatomines from the southwestern United States: an update on potential risk for transmission of Chagas disease. Acta Trop 111: 114118.

    • Search Google Scholar
    • Export Citation
  • 4.

    Navin TR, Roberto RR, Juranek DD, Limpakarnjanarat K, Mortenson EW, Clover JR, Yescott RE, Taclindo C, Steurer F, Allain D, 1985. Human and sylvatic Trypanosoma cruzi infection in California. Am J Public Health 75: 366369.

    • Search Google Scholar
    • Export Citation
  • 5.

    Bern C, Montgomery SP, Katz L, Caglioti S, Stramer SL, 2008. Chagas disease and the US blood supply. Curr Opin Infect Dis 21: 476482.

  • 6.

    Reisenman CE, Lawrence G, Guerenstein PG, Gregory T, Dotson EM, Hildebrand JG, 2010. Infection of kissing bugs with Trypanosoma cruzi, Tucson, Arizona, USA. Emerg Infect Dis 16: 400405.

    • Search Google Scholar
    • Export Citation
  • 7.

    Roellig DM, Brown EL, Barnabe C, Tibayrenc M, Steurert FJ, Yabsley MJ, 2008. Molecular typing of Trypanosoma cruzi isolates, United States. Emerg Infect Dis 14: 11231125.

    • Search Google Scholar
    • Export Citation
  • 8.

    Llewellyn MS, Miles MA, Carrasco HJ, Lewis MD, Yeo M, Vargas J, Torrico F, Diosque P, Valente V, Valente SA, Gaunt MW, 2009. Genome-scale multilocus microsatellite typing of Trypanosoma cruzi discrete typing unit I reveals phylogeographic structure and specific genotypes linked to human infection. PLoS Pathog 5: 9.

    • Search Google Scholar
    • Export Citation
  • 9.

    Zingales B, Andrade SG, Briones MRS, Campbell DA, Chiari E, Fernandes O, Guhl F, Lages-Silva E, Macedo AM, Machado CR, Miles MA, Romanha AJ, Sturm NR, Tibayrenc M, Schijman AG, 2009. A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI. Mem Inst Oswaldo Cruz 104: 10511054.

    • Search Google Scholar
    • Export Citation
  • 10.

    Westenberger SJ, Sturm NR, Yanega D, Podlipaev SA, Zeledon R, Campbell DA, Maslov DA, 2004. Trypanosomatid biodiversity in Costa Rica: genotyping of parasites from heteroptera using the spliced leader RNA gene. Parasitology 129: 537547.

    • Search Google Scholar
    • Export Citation
  • 11.

    Souto RP, Zingales B, 1993. Sensitive detection and strain classification of Trypanosoma cruzi by amplification of a ribosomal RNA sequence. Mol Biochem Parasitol 62: 4552.

    • Search Google Scholar
    • Export Citation
  • 12.

    Souto RP, Fernandes O, Macedo AM, Campbell DA, Zingales B, 1996. DNA markers define two major phylogenetic lineages of Trypanosoma cruzi. Mol Biochem Parasitol 83: 141152.

    • Search Google Scholar
    • Export Citation
  • 13.

    Maslov DA, Lukes J, Jirku M, Simpson L, 1996. Phylogeny of trypanosomes as inferred from the small and large subunit rRNAs: implications for the evolution of parasitism in the trypanosomatid protozoa. Mol Biochem Parasitol 75: 197205.

    • Search Google Scholar
    • Export Citation
  • 14.

    Katoh K, Kuma K, Toh H, Miyata T, 2005. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33: 511518.

  • 15.

    Wood SF, 1975. Trypanosoma cruzi; new foci of enzootic Chagas disease in California. Exp Parasitol 38: 153160.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Infection Rates of Triatoma protracta (Uhler) with Trypanosoma cruzi in Southern California and Molecular Identification of Trypanosomes

View More View Less
  • Department of Entomology, and Department of Biology, University of California, Riverside, California
Restricted access

We report Trypanosoma cruzi infection rates of the native kissing bug Triatoma protracta in southern California. The rates are within the historically reported range, but differ significantly between the two sites (19% in Escondido and 36% in Glendora). Identification of T. cruzi in T. protracta was conducted for the first time by using partial 18S ribosomal RNA and 24Sα ribosomal RNA sequences. Incongruence of 24Sα ribosomal RNA phylogeny with current T. cruzi genotype classification supports non-clonality of some T. cruzi genotypes.

Author Notes

*Address correspondence to Christiane Weirauch, Department of Entomology, University of California, 3401 Watkins Drive, Riverside, CA 92521. E-mail: christiane.weirauch@ucr.edu

Financial support: This study was supported by the California Desert Research Fund (Wei Song Hwang and Guanyang Zhang), the Department of Entomology at the University of California, Riverside, and the National Science Foundation grant PEET DEB-0933853 (Christiane Weirauch).

Authors' addresses: Wei Song Hwang, Guanyang Zhang, Christiane Weirauch, Department of Entomology, University of California, Riverside, CA. Dmitri Maslov, Department of Biology, University of California, Riverside, CA.

Save