World Health Organization, 2002. Urbanization: an increasing risk factor for leishmaniasis. Wkly Epidemiol Rec 77: 6.
Brazil Ministério da Saúde, 2006. Leishmaniose visceral (calazar). Distribuição de casos confirmados, por Unidade Federada. Brasil, 1980–2005. Available at: http://portal.saude.gov.br/portal/arquivos/pdf/leish_visceral.pdf.
World Health Organization, 2010. Research to support the elimination of visceral leishmaniasis. Available at: http://apps.who.int/tdr/svc/research/visceral-leishmaniasis-elimination.
Theodos CM, Ribeiro JM, Titus RG, 1991. Analysis of enhancing effect of sand fly saliva on Leishmania infection in mice. Infect Immun 59: 1592–1598.
Samuelson J, Lerner E, Tesh R, Titus R, 1991. A mouse model of Leishmania braziliensis braziliensis infection produced by coinjection with sand fly saliva. J Exp Med 173: 49–54.
Warburg A, Saraiva E, Lanzaro GC, Titus RG, Neva F, 1994. Saliva of Lutzomyia longipalpis sibling species differs in its composition and capacity to enhance leishmaniasis. Philos Trans R Soc Lond B Biol Sci 345: 223–230.
Lima HC, Titus RG, 1996. Effects of sand fly vector saliva on development of cutaneous lesions and the immune response to Leishmania braziliensis in BALB/c mice. Infect Immun 64: 5442–5445.
Belkaid Y, Kamhawi S, Modi G, Valenzuela J, Noben-Trauth N, Rowton E, Ribeiro J, Sacks DL, 1998. Development of a natural model of cutaneous leishmaniasis: powerful effects of vector saliva and saliva preexposure on the long-term outcome of Leishmania major infection in the mouse ear dermis. J Exp Med 188: 1941–1953.
Norsworthy NB, Sun J, Elnaiem D, Lanzaro G, Soong L, 2004. Sand fly saliva enhances Leishmania amazonensis infection by modulating interleukin-10 production. Infect Immun 72: 1240–1247.
Valenzuela JG, Belkaid Y, Garfield MK, Mendez S, Kamhawi S, Rowton ED, Sacks DL, Ribeiro JM, 2001. Toward a defined anti-Leishmania vaccine targeting vector antigens: characterization of a protective salivary protein. J Exp Med 194: 331–342.
Morris RV, Shoemaker CB, David JR, Lanzaro GC, Titus RG, 2001. Sandfly maxadilan exacerbates infection with Leishmania major and vaccinating against it protects against L. major infection. J Immunol 167: 5226–5230.
Kamhawi S, Belkaid Y, Modi G, Rowton E, Sacks D, 2000. Protection against cutaneous leishmaniasis resulting from bites of uninfected sand flies. Science 290: 1351–1354.
Vinhas V, Andrade BB, Paes F, Bomura A, Clarencio J, Miranda JC, Báfica A, Barral A, Barral-Netto M, 2007. Human anti-saliva immune response following experimental exposure to the visceral leishmaniasis vector, Lutzomyia longipalpis. Eur J Immunol 37: 3111–3121.
Gomes RB, Brodskyn C, de Oliveira CI, Costa J, Miranda JC, Caldas A, Valenzuela JG, Barral-Netto M, Barral A, 2002. Seroconversion against Lutzomyia longipalpis saliva concurrent with the development of anti-Leishmania chagasi delayed-type hypersensitivity. J Infect Dis 186: 1530–1534.
Oliveira F, Lawyer PG, Kamhawi S, Valenzuela JG, 2002. Immunity to distinct sand fly salivary proteins primes the anti-Leishmania immune response towards protection or exacerbation of disease. PLoS Negl Trop Dis 2: e226.
Reed SG, Badaro R, Masur H, Carvalho EM, Lorenco R, Lisboa A, Teixeira R, Johnson WD Jr, Jones TC, 1986. Selection of a skin test antigen for American visceral leishmaniasis. Am J Trop Med Hyg 35: 79–85.
Barral A, Honda E, Caldas A, Costa J, Vinhas V, Rowton ED, Valenzuela JG, Charlab R, Barral-Netto M, Ribeiro M, 2000. Human immune response to sand fly salivary gland antigens: a useful epidemiological marker? Am J Trop Med Hyg 62: 740–745.
Belkaid Y, Valenzuela JG, Kamhawi S, Rowton E, Sacks DL, Ribeiro JM, 2000. Delayed-type hypersensitivity to Phlebotomus papatasi sand fly bite: an adaptive response induced by the fly? Proc Natl Acad Sci USA 97: 6704–6709.
Souza AP, Andrade BB, Aquino D, Entringer P, Miranda JC, Alcantara R, Ruiz D, Soto M, Teixeira CR, Valenzuela JG, de Oliveira CI, Brodskyn CI, Barral-Netto M, Barral A, 2010. Using recombinant proteins from Lutzomyia longipalpis saliva to estimate human vector exposure in visceral leishmaniasis endemic areas. PLoS Negl Trop Dis 4: e649.
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 13 | 13 | 4 |
Full Text Views | 333 | 97 | 0 |
PDF Downloads | 59 | 29 | 0 |
Recent reports from animal models and from cross-sectional studies have suggested that host responses to anti-Lutzomyia longipalpis saliva antibodies may be related to delayed-type hypersensitivity to Leishmania antigen. In a prospective cohort study, we evaluated 1,080 children from two endemic areas for visceral leishmaniasis (VL) by means of Kaplan-Meier analysis. The incidence rate of delayed-type hypersensitivity to Leishmania antigen, measured at the 24th follow-up month, was higher among those reactive to Lu. longipalpis saliva antibodies at the beginning of the study (0.0217 cases per person-month) than among those previously negative (0.0131 cases per person-month) (P value for the log-rank test = 0.0006). It seems that mounting an anti-saliva immune response helps the development of a cell-mediated anti-Leishmania response.
Financial support: This work was supported by grants from CNPq – Portuguese acronym for the Brazilian National Research Council (CYTED and Renorbio). MBN, AAMS, and AB are senior investigators from CNPq.
Authors' addresses: Dorlene M. C. Aquino and Arlene J. M. Caldas, Departamento de Enfermagem, Universidade Federal do Maranhão, São Luís, Maranhão, Brazil. José Carlos Miranda, Laboratório de Imunoparasitologia (LIP), Centro de Pesquisas Gonçalo Moniz (CPqGM), Fundação Oswaldo Cruz – FIOCRUZ - Bahia, Salvador, Bahia, Brazil. Antonio A. M. Silva, Departamento de Saúde Pública, Universidade Federal do Maranhão, São Luís, Maranhão, Brazil. Manoel Barral-Netto, Laboratório de Imuno-regulação (LIMI), Centro de Pesquisas Gonçalo Moniz (CPqGM), Fundação Oswaldo Cruz – FIOCRUZ - Bahia, Salvador, Bahia, Brazil; Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Bahia, Brazil; and Instituto Nacional de Ciência e Tecnologia de Investigação em Imunologia - iii - INCT, Salvador, Bahia, Brazil. Aldina Barral, Laboratório de Imunoparasitologia (LIP), Centro de Pesquisas Gonçalo Moniz (CPqGM), Fundação Oswaldo Cruz – FIOCRUZ - Bahia, Salvador, Bahia, Brazil; Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Bahia, Brazil; and Instituto Nacional de Ciência e Tecnologia de Investigação em Imunologia - iii - INCT, Salvador, Bahia, Brazil.
World Health Organization, 2002. Urbanization: an increasing risk factor for leishmaniasis. Wkly Epidemiol Rec 77: 6.
Brazil Ministério da Saúde, 2006. Leishmaniose visceral (calazar). Distribuição de casos confirmados, por Unidade Federada. Brasil, 1980–2005. Available at: http://portal.saude.gov.br/portal/arquivos/pdf/leish_visceral.pdf.
World Health Organization, 2010. Research to support the elimination of visceral leishmaniasis. Available at: http://apps.who.int/tdr/svc/research/visceral-leishmaniasis-elimination.
Theodos CM, Ribeiro JM, Titus RG, 1991. Analysis of enhancing effect of sand fly saliva on Leishmania infection in mice. Infect Immun 59: 1592–1598.
Samuelson J, Lerner E, Tesh R, Titus R, 1991. A mouse model of Leishmania braziliensis braziliensis infection produced by coinjection with sand fly saliva. J Exp Med 173: 49–54.
Warburg A, Saraiva E, Lanzaro GC, Titus RG, Neva F, 1994. Saliva of Lutzomyia longipalpis sibling species differs in its composition and capacity to enhance leishmaniasis. Philos Trans R Soc Lond B Biol Sci 345: 223–230.
Lima HC, Titus RG, 1996. Effects of sand fly vector saliva on development of cutaneous lesions and the immune response to Leishmania braziliensis in BALB/c mice. Infect Immun 64: 5442–5445.
Belkaid Y, Kamhawi S, Modi G, Valenzuela J, Noben-Trauth N, Rowton E, Ribeiro J, Sacks DL, 1998. Development of a natural model of cutaneous leishmaniasis: powerful effects of vector saliva and saliva preexposure on the long-term outcome of Leishmania major infection in the mouse ear dermis. J Exp Med 188: 1941–1953.
Norsworthy NB, Sun J, Elnaiem D, Lanzaro G, Soong L, 2004. Sand fly saliva enhances Leishmania amazonensis infection by modulating interleukin-10 production. Infect Immun 72: 1240–1247.
Valenzuela JG, Belkaid Y, Garfield MK, Mendez S, Kamhawi S, Rowton ED, Sacks DL, Ribeiro JM, 2001. Toward a defined anti-Leishmania vaccine targeting vector antigens: characterization of a protective salivary protein. J Exp Med 194: 331–342.
Morris RV, Shoemaker CB, David JR, Lanzaro GC, Titus RG, 2001. Sandfly maxadilan exacerbates infection with Leishmania major and vaccinating against it protects against L. major infection. J Immunol 167: 5226–5230.
Kamhawi S, Belkaid Y, Modi G, Rowton E, Sacks D, 2000. Protection against cutaneous leishmaniasis resulting from bites of uninfected sand flies. Science 290: 1351–1354.
Vinhas V, Andrade BB, Paes F, Bomura A, Clarencio J, Miranda JC, Báfica A, Barral A, Barral-Netto M, 2007. Human anti-saliva immune response following experimental exposure to the visceral leishmaniasis vector, Lutzomyia longipalpis. Eur J Immunol 37: 3111–3121.
Gomes RB, Brodskyn C, de Oliveira CI, Costa J, Miranda JC, Caldas A, Valenzuela JG, Barral-Netto M, Barral A, 2002. Seroconversion against Lutzomyia longipalpis saliva concurrent with the development of anti-Leishmania chagasi delayed-type hypersensitivity. J Infect Dis 186: 1530–1534.
Oliveira F, Lawyer PG, Kamhawi S, Valenzuela JG, 2002. Immunity to distinct sand fly salivary proteins primes the anti-Leishmania immune response towards protection or exacerbation of disease. PLoS Negl Trop Dis 2: e226.
Reed SG, Badaro R, Masur H, Carvalho EM, Lorenco R, Lisboa A, Teixeira R, Johnson WD Jr, Jones TC, 1986. Selection of a skin test antigen for American visceral leishmaniasis. Am J Trop Med Hyg 35: 79–85.
Barral A, Honda E, Caldas A, Costa J, Vinhas V, Rowton ED, Valenzuela JG, Charlab R, Barral-Netto M, Ribeiro M, 2000. Human immune response to sand fly salivary gland antigens: a useful epidemiological marker? Am J Trop Med Hyg 62: 740–745.
Belkaid Y, Valenzuela JG, Kamhawi S, Rowton E, Sacks DL, Ribeiro JM, 2000. Delayed-type hypersensitivity to Phlebotomus papatasi sand fly bite: an adaptive response induced by the fly? Proc Natl Acad Sci USA 97: 6704–6709.
Souza AP, Andrade BB, Aquino D, Entringer P, Miranda JC, Alcantara R, Ruiz D, Soto M, Teixeira CR, Valenzuela JG, de Oliveira CI, Brodskyn CI, Barral-Netto M, Barral A, 2010. Using recombinant proteins from Lutzomyia longipalpis saliva to estimate human vector exposure in visceral leishmaniasis endemic areas. PLoS Negl Trop Dis 4: e649.
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 13 | 13 | 4 |
Full Text Views | 333 | 97 | 0 |
PDF Downloads | 59 | 29 | 0 |