• 1.

    Kramer LD, Bernard KA, 2001. West Nile virus infection in birds and mammals. Ann N Y Acad Sci 951: 8493.

  • 2.

    Dietrich G, Montenieri JA, Panella NA, Langevin S, Lasater SE, Klenk K, Kile JC, Komar N, 2005. Serologic evidence of West Nile virus infection in free-ranging mammals, Slidell, Louisiana, 2002. Vector Borne Zoonotic Dis 5: 288292.

    • Search Google Scholar
    • Export Citation
  • 3.

    Root JJ, Hall JS, McLean RG, Marlenee NL, Beaty BJ, Gansowski J, Clark L, 2005. Serologic evidence of exposure of wild mammals to flaviviruses in the central and eastern United States. Am J Trop Med Hyg 72: 622630.

    • Search Google Scholar
    • Export Citation
  • 4.

    Docherty DE, Samuel MD, Nolden CA, Egstad KF, Griffin KM, 2006. West Nile virus antibody prevalence in wild mammals, southern Wisconsin. Emerg Infect Dis 12: 19821984.

    • Search Google Scholar
    • Export Citation
  • 5.

    Bentler KT, Hall JS, Root JJ, Klenk K, Schmit B, Ramey P, Blackwell BF, Clark L, 2007. West Nile virus seroprevalence in meso-predators in North America. Am J Trop Med Hyg 76: 173179.

    • Search Google Scholar
    • Export Citation
  • 6.

    Root JJ, Oesterle PT, Sullivan HJ, Hall JS, Marlenee NL, McLean RG, Montenieri JA, Clark L, 2007. Fox squirrel (Sciurus niger) associations with West Nile virus. Am J Trop Med Hyg 76: 782784.

    • Search Google Scholar
    • Export Citation
  • 7.

    Gómez A, Kilpatrick AM, Kramer LD, Dupuis AP, Maffei JG, Goetz SJ, Marra PP, Daszak P, Aguirre AA, 2008. Land use and West Nile virus seroprevalence in wild mammals. Emerg Infect Dis 14: 962965.

    • Search Google Scholar
    • Export Citation
  • 8.

    Blitvich BJ, Juarez LI, Tucker BJ, Rowley WA, Platt KB, 2009. Antibodies to West Nile virus in raccoons and other wild peridomestic mammals in Iowa. J Wildl Dis 45: 11631168.

    • Search Google Scholar
    • Export Citation
  • 9.

    Docherty DE, Samuel MD, Egstad KF, Griffin KM, Nolden CA, Karwal L, Ip HS, 2009. Short report: changes in West Nile virus seroprevalence and antibody titers among Wisconsin mesopredators 2003–2006. Am J Trop Med Hyg 81: 177179.

    • Search Google Scholar
    • Export Citation
  • 10.

    Blitvich BJ, Bowen RA, Marlenee NL, Hall RA, Bunning ML, Beaty BJ, 2003. Epitope-blocking enzyme-linked immunosorbent assays for detection of West Nile virus antibodies in domestic mammals. J Clin Microbiol 41: 26762679.

    • Search Google Scholar
    • Export Citation
  • 11.

    Tesh RB, Siirin M, Guzman H, Travassos da Rosa AP, Wu X, Duan T, Lei H, Nunes MR, Xiao SY, 2005. Persistent West Nile virus infection in the golden hamster: studies on its mechanism and possible implications for other flavivirus infections. J Infect Dis 192: 287295.

    • Search Google Scholar
    • Export Citation
  • 12.

    Root JJ, Oesterle PT, Nemeth N, Klenk K, Gould D, McLean RG, Clark L, Hall JS, 2006. Experimental infection of fox squirrels (Sciurus niger) with West Nile virus. Am J Trop Med Hyg 75: 697701.

    • Search Google Scholar
    • Export Citation
  • 13.

    Platt KB, Tucker BJ, Halbur PG, Blitvich BJ, Fabiosa FG, Mullin K, Parikh GR, Kitikoon P, Barthalomay LC, Rowley WA, 2008. Fox squirrels (Sciurus niger) develop West Nile virus viremias sufficient for infecting select mosquito species. Vector Borne Zoonotic Dis 8: 225233.

    • Search Google Scholar
    • Export Citation
  • 14.

    Tiawsirisup S, Blitvich BJ, Tucker BJ, Halbur PJ, Bartholomay LC, Rowley WA, Platt KB, 2010. Susceptibility of fox squirrels (Sciurus niger) to West Nile virus by oral exposure. Vector Borne Zoonotic Dis 10: 207209.

    • Search Google Scholar
    • Export Citation
  • 15.

    Gómez A, Kramer LD, Dupuis AP, Kilpatrick AM, Davis LJ, Jones MJ, Daszak P, Aguirre AA, 2008. Experimental infection of eastern gray squirrels (Sciurus carolinensis) with West Nile virus. Am J Trop Med Hyg 79: 447451.

    • Search Google Scholar
    • Export Citation
  • 16.

    Platt KB, Tucker BJ, Halbur PG, Tiawsirisup S, Blitvich BJ, Fabiosa FG, Bartholomay LC, Rowley WA, 2007. West Nile virus viremia in eastern chipmunks (Tamias striatus) sufficient for infecting different mosquitoes. Emerg Infect Dis 13: 831837.

    • Search Google Scholar
    • Export Citation
  • 17.

    Tiawsirisup S, Platt KB, Tucker BJ, Rowley WA, 2005. Eastern cottontail rabbits (Sylvilagus floridanus) develop West Nile virus viremias sufficient for infecting select mosquito species. Vector Borne Zoonotic Dis 5: 342350.

    • Search Google Scholar
    • Export Citation
  • 18.

    Komar N, Langevin S, Hinten S, Nemeth N, Edwards E, Hettler D, Davis B, Bowen R, Bunning M, 2003. Experimental infection of North American birds with the New York 1999 strain of West Nile virus. Emerg Infect Dis 9: 311322.

    • Search Google Scholar
    • Export Citation
  • 19.

    Fitzgerald JP, Meaney CA, Armstrong DM, 1994. Mammals of Colorado. Niwot, CO: University Press of Colorado.

  • 20.

    Schmidly DJ, 2004. The Mammals of Texas. Revised Edition. Austin, TX: University of Texas Press.

  • 21.

    Rupprecht CE, Smith JS, 1994. Raccoon rabies: the re-emergence of an epizootic in a densely populated area. Semin Virol 5: 155164.

  • 22.

    Sorvillo F, Ash LR, Berlin OG, Yatabe J, Degiorgio C, Morse SA, 2002. Baylisascaris procyonis: an emerging helminthes zoonoses. Emerg Infect Dis 8: 355359.

    • Search Google Scholar
    • Export Citation
  • 23.

    Hall JS, Bentler KT, Landolt G, Elmore SA, Minnis RB, Campbell TA, Barras SC, Root JJ, Pilon J, Pabilonia K, Driscoll C, Slate D, Sullivan H, McLean RG, 2008. Influenza infection in wild raccoons. Emerg Infect Dis 14: 18421848.

    • Search Google Scholar
    • Export Citation
  • 24.

    McLean RG, Ubico SR, Bourne D, Komar N, 2002. West Nile virus in livestock and wildlife. Curr Top Microbiol Immunol 67: 271308.

  • 25.

    Bunning ML, Bowen RA, Cropp CB, Sullivan KG, Davis BS, Komar N, Godsey MS, Baker D, Hettler DL, Holmes DA, Biggerstaff BJ, Mitchell CJ, 2002. Experimental infection of horses with West Nile virus. Emerg Infect Dis 8: 380386.

    • Search Google Scholar
    • Export Citation
  • 26.

    Beaty BJ, Calisher CH, Shope RE, 1995. Diagnostic procedures for viral, rickettsial, and chlamydial infections. Lennette EH, Lennette DA, Lennette ET, eds. Arboviruses. Washington, DC: American Public Health Association, 189212.

    • Search Google Scholar
    • Export Citation
  • 27.

    Nemeth NM, Beckett S, Edwards E, Klenk K, Komar N, 2007. Avian mortality surveillance for West Nile virus in Colorado. Am J Trop Med Hyg 76: 431437.

    • Search Google Scholar
    • Export Citation
  • 28.

    McLean RG, Francy DB, Campos EG, 1985. Experimental studies of St. Louis encephalitis virus in vertebrates. J Wildl Dis 21: 8593.

  • 29.

    Styer LM, Bernard KA, Kramer LD, 2006. Enhanced early West Nile virus infection in young chickens infected by mosquito bite: effect of viral dose. Am J Trop Med Hyg 75: 337345.

    • Search Google Scholar
    • Export Citation
  • 30.

    Austgen LE, Bowen RA, Bunning ML, Davis BS, Mitchell CJ, Chang GJ, 2004. Experimental infection of cats and dogs with West Nile virus. Emerg Infect Dis 10: 8286.

    • Search Google Scholar
    • Export Citation
  • 31.

    Page LK, Swihart LK, Kazacos KR, 1999. Implications of raccoon latrines in the epizootiology of baylisascariasis. J Wildl Dis 35: 474480.

  • 32.

    Tonry JH, Brown CB, Cropp CB, Co JK, Bennett SN, Nerurkar VR, Kuberski T, Gubler DJ, 2005. West Nile virus detection in urine. Emerg Infect Dis 11: 12941296.

    • Search Google Scholar
    • Export Citation
  • 33.

    Murray K, Walker C, Herrington E, Lewis JA, McCormick J, Beasley DW, Tesh RB, Fischer-Hoch S, 2010. Persistent infection with West Nile virus years after initial infection. J Infect Dis 201: 24.

    • Search Google Scholar
    • Export Citation
  • 34.

    Tiawsirisup S, Platt KB, Evan RB, Rowley WA, 2004. Susceptibility of Ochlerotatus trivittatus (Coq.), Aedes albopictus (Skuse), and Culex pipiens (L.) to West Nile virus infection. Vector Borne Zoonotic Dis 4: 190197.

    • Search Google Scholar
    • Export Citation
  • 35.

    McGee CE, Schneider BS, Girard YA, Vanlandingham DL, Higgs S, 2007. Nonviremic transmission of West Nile virus: evaluation of the effects of space, time, and mosquito species. Am J Trop Med Hyg 76: 424430.

    • Search Google Scholar
    • Export Citation
 
 
 
 
 
 
 
 

 

 

 

 

Experimental Infection of Raccoons (Procyon lotor) with West Nile Virus

View More View Less
  • United States Department of Agriculture, Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado; United States Department of Agriculture, Wildlife Services, National Wildlife Disease Program, Fort Collins, Colorado; Colorado State University, Fort Collins, Colorado

To characterize the responses of raccoons to West Nile virus (WNV) infection, we subcutaneously exposed them to WNV. Moderately high viremia titers (≤ 104.6 plaque forming units [PFU]/mL of serum) were noted in select individuals; however, peak viremia titers were variable and viremia was detectable in some individuals as late as 10 days post-inoculation (DPI). In addition, fecal shedding was prolonged in some animals (e.g., between 6 and 13 DPI in one individual), with up to105.0 PFU/fecal swab detected. West Nile virus was not detected in tissues collected on 10 or 16 DPI, and no histologic lesions attributable to WNV infection were observed. Overall, viremia profiles suggest that raccoons are unlikely to be important WNV amplifying hosts. However, this species may occasionally shed significant quantities of virus in feces. Considering their behavioral ecology, including repeated use of same-site latrines, high levels of fecal shedding could potentially lead to interspecies fecal-oral WNV transmission.

Author Notes

*Address correspondence to J. Jeffrey Root, National Wildlife Research Center, 4101 La Porte Ave., Fort Collins, CO 80521. E-mail: jeff.root@aphis.usda.gov

Financial support: Funding for this work was provided by the U.S. Department of Agriculture and the U.S. Centers for Disease Control and Prevention (CDC IAA 03FED12031).

Author's addresses: J. Jeffrey Root, Kevin T. Bentler, and Alan B. Franklin, United States Department of Agriculture, Wildlife Services, National Wildlife Research Center, Fort Collins, CO, E-mails: jeff.root@aphis.usda.gov, kevin.t.bentler@aphis.usda.gov, and alan.b.franklin@aphis.usda.gov. Nicole M. Nemeth, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, E-mail: nicole.nemeth@colostate.edu. Thomas Gidlewski, United States Department of Agriculture, Wildlife Services, National Wildlife Disease Program, Fort Collins, CO, E-mail: thomas.gidlewski@aphis.usda.gov. Terry R. Spraker, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, E-mail: terry.spraker@colostate.edu.

Reprint requests: J. Jeffrey Root, National Wildlife Research Center, 4101 La Porte Ave., Fort Collins, CO 80521.

Save