Gubler DJ, 2002. The global emergence/resurgence of arboviral diseases as public health problems. Arch Med Res 33: 330–342.
Wilder-Smith A, Schwartz E, 2005. Dengue in travelers. N Engl J Med 353: 924–932.
Guzman MG, Kouri G, 2002. Dengue: an update. Lancet Infect Dis 2: 33–42.
Gratz NG, 2004. Critical review of the vector status of Aedes albopictus. Med Vet Entomol 18: 215–227.
Woodring JL, Higgs S, Beaty BJ, 1996. Natural cycles of vector-borne pathogens. Beaty BJ, Marquardt WC, eds. The Biology of Disease Vectors. Niwot, CO: University Press of Colorado, 51–72.
Gubler DJ, Rosen L, 1976. Variation among geographic strains of Aedes albopictus in susceptibility to infection with dengue viruses. Am J Trop Med Hyg 25: 318–325.
Gubler DJ, Nalim S, Tan R, Saipan H, Sulianti Saroso J, 1979. Variation in susceptibility to oral infection with dengue viruses among geographic strains of Aedes aegypti. Am J Trop Med Hyg 28: 1045–1052.
Tardieux I, Poupel O, Lapchin L, Rodhain F, 1990. Variation among strains of Aedes aegypti in susceptibility to oral infection with dengue virus type 2. Am J Trop Med Hyg 43: 308–313.
Sumanochitrapon W, Strickman D, Sithiprasasna R, Kittayapong P, Innis BL, 1998. Effect of size and geographic origin of Aedes aegypti on oral infection with dengue-2 virus. Am J Trop Med Hyg 58: 283–286.
Vazeille-Falcoz M, Mousson L, Rodhain F, Chungue E, Failloux AB, 1999. Variation in oral susceptibility to dengue type 2 virus of populations of Aedes aegypti from the islands of Tahiti and Moorea, French Polynesia. Am J Trop Med Hyg 60: 292–299.
Bennett KE, Olson KE, Munoz Mde L, Fernandez-Salas I, Farfan-Ale JA, Higgs S, Black WCT, Beaty BJ, 2002. Variation in vector competence for dengue 2 virus among 24 collections of Aedes aegypti from Mexico and the United States. Am J Trop Med Hyg 67: 85–92.
Vazeille M, Rosen L, Mousson L, Failloux AB, 2003. Low oral receptivity for dengue type 2 viruses of Aedes albopictus from southeast Asia compared with that of Aedes aegypti. Am J Trop Med Hyg 68: 203–208.
Bosio CF, Beaty BJ, Black WCT, 1998. Quantitative genetics of vector competence for dengue-2 virus in Aedes aegypti. Am J Trop Med Hyg 59: 965–970.
Bosio CF, Fulton RE, Salasek ML, Beaty BJ, Black WCT, 2000. Quantitative trait loci that control vector competence for dengue-2 virus in the mosquito Aedes aegypti. Genetics 156: 687–698.
Sylla M, Bosio C, Urdaneta-Marquez L, Ndiaye M, Black WCT, 2009. Gene flow, subspecies composition, and dengue virus-2 susceptibility among Aedes aegypti collections in Senegal. PLoS Negl Trop Dis 3: e408.
Sriurairatna S, Bhamarapravati N, 1977. Replication of dengue-2 virus in Aedes albopictus mosquitoes. An electron microscopic study. Am J Trop Med Hyg 26: 1199–1205.
Kuberski T, 1979. Fluorescent antibody studies on the development of dengue-2 virus in Aedes albopictus (Diptera: Culicidae). J Med Entomol 16: 343–349.
Chen WJ, Wei HL, Hsu EL, Chen ER, 1993. Vector competence of Aedes albopictus and Ae. aegypti (Diptera: Culicidae) to dengue 1 virus on Taiwan: development of the virus in orally and parenterally infected mosquitoes. J Med Entomol 30: 524–530.
Linthicum KJ, Platt K, Myint KS, Lerdthusnee K, Innis BL, Vaughn DW, 1996. Dengue 3 virus distribution in the mosquito Aedes aegypti: an immunocytochemical study. Med Vet Entomol 10: 87–92.
Salazar MI, Richardson JH, Sanchez-Vargas I, Olson KE, Beaty BJ, 2007. Dengue virus type 2: replication and tropisms in orally infected Aedes aegypti mosquitoes. BMC Microbiol 7: 9.
Molina-Cruz A, Gupta L, Richardson J, Bennett K, Black WT, Barillas-Mury C, 2005. Effect of mosquito midgut trypsin activity on dengue-2 virus infection and dissemination in Aedes aegypti. Am J Trop Med Hyg 72: 631–637.
Richardson J, Molina-Cruz A, Salazar MI, Black WT, 2006. Quantitative analysis of dengue-2 virus RNA during the extrinsic incubation period in individual Aedes aegypti. Am J Trop Med Hyg 74: 132–141.
Rosen L, Gubler D, 1974. The use of mosquitoes to detect and propagate dengue viruses. Am J Trop Med Hyg 23: 1153–1160.
Wu Y, Parthasarathy R, Bai H, Palli SR, 2006. Mechanisms of midgut remodeling: juvenile hormone analog methoprene blocks midgut metamorphosis by modulating ecdysone action. Mech Dev 123: 530–547.
Gubler DJ, Novak RJ, Vergne E, Colon NA, Velez M, Fowler J, 1985. Aedes (Gymnometopa) mediovittatus (Diptera: Culicidae), a potential maintenance vector of dengue viruses in Puerto Rico. J Med Entomol 22: 469–475.
Watts DM, Burke DS, Harrison BA, Whitmire RE, Nisalak A, 1987. Effect of temperature on the vector efficiency of Aedes aegypti for dengue 2 virus. Am J Trop Med Hyg 36: 143–152.
Johnson BW, Chambers TV, Crabtree MB, Bhatt TR, Guirakhoo F, Monath TP, Miller BR, 2002. Growth characteristics of ChimeriVax-DEN2 vaccine virus in Aedes aegypti and Aedes albopictus mosquitoes. Am J Trop Med Hyg 67: 260–265.
Armstrong PM, Rico-Hesse R, 2001. Differential susceptibility of Aedes aegypti to infection by the American and southeast Asian genotypes of dengue type 2 virus. Vector Borne Zoonotic Dis 1: 159–168.
Armstrong PM, Rico-Hesse R, 2003. Efficiency of dengue serotype 2 virus strains to infect and disseminate in Aedes aegypti. Am J Trop Med Hyg 68: 539–544.
Johnson BW, Chambers TV, Crabtree MB, Guirakhoo F, Monath TP, Miller BR, 2004. Analysis of the replication kinetics of the ChimeriVax-DEN 1, 2, 3, 4 tetravalent virus mixture in Aedes aegypti by real-time reverse transcriptase-polymerase chain reaction. Am J Trop Med Hyg 70: 89–97.
Gubler DJ, Rosen L, 1977. Quantitative aspects of replication of dengue viruses in Aedes albopictus (Diptera: Culicidae) after oral and parenteral infection. J Med Entomol 31: 469–472.
Romoser WS, Faran ME, Bailey CL, Lerdthusnee K, 1992. An immunocytochemical study of the distribution of Rift Valley fever virus in the mosquito Culex pipiens. Am J Trop Med Hyg 46: 489–501.
Sanchez-Vargas I, Scott JC, Poole-Smith BK, Franz AW, Barbosa-Solomieu V, Wilusz J, Olson KE, Blair CD, 2009. Dengue virus type 2 infections of Aedes aegypti are modulated by the mosquito's RNA interference pathway. PLoS Pathog 5: e1000299.
Weaver SC, Scott TW, Lorenz LH, Lerdthusnee K, Romoser WS, 1988. Togavirus-associated pathologic changes in the midgut of a natural mosquito vector. J Virol 62: 2083–2090.
Romoser WS, Wasieloski LP Jr, Pushko P, Kondig JP, Lerdthusnee K, Neira M, Ludwig GV, 2004. Evidence for arbovirus dissemination conduits from the mosquito (Diptera: Culicidae) midgut. J Med Entomol 41: 467–475.
Romoser WS, Turell MJ, Lerdthusnee K, Neira M, Dohm D, Ludwig G, Wasieloski L, 2005. Pathogenesis of Rift Valley fever virus in mosquitoes—tracheal conduits and the basal lamina as an extra-cellular barrier. Arch Virol Suppl 19: 89–100.
Sanders HR, Foy BD, Evans AM, Ross LS, Beaty BJ, Olson KE, Gill SS, 2005. Sindbis virus induces transport processes and alters expression of innate immunity pathway genes in the midgut of the disease vector, Aedes aegypti. Insect Biochem Mol Biol 35: 1293–1307.
Bryant B, Blair CD, Olson KE, Clem RJ, 2008. Annotation and expression profiling of apoptosis-related genes in the yellow fever mosquito, Aedes aegypti. Insect Biochem Mol Biol 38: 331–345.
Campbell CL, Keene KM, Brackney DE, Olson KE, Blair CD, Wilusz J, Foy BD, 2008. Aedes aegypti uses RNA interference in defense against Sindbis virus infection. BMC Microbiol 8: 47.
Xi Z, Ramirez JL, Dimopoulos G, 2008. The Aedes aegypti toll pathway controls dengue virus infection. PLoS Pathog 4: e1000098.
Platt KB, Linthicum KJ, Myint KS, Innis BL, Lerdthusnee K, Vaughn DW, 1997. Impact of dengue virus infection on feeding behavior of Aedes aegypti. Am J Trop Med Hyg 57: 119–125.
Raikhel AS, Deitsch KW, Sappington TW, 1997. Culture and analysis of the insect fat body. Crampton JM, Beard CB, Louis C, eds. Molecular Biology of Insect Disease Vectors. London: Chapman Hall, 507–522.
Dimopoulos G, Richman A, Muller HM, Kafatos FC, 1997. Molecular immune responses of the mosquito Anopheles gambiae to bacteria and malaria parasites. Proc Natl Acad Sci USA 94: 11508–11513.
Gorman MJ, Andreeva OV, Paskewitz SM, 2000. Sp22D: a multidomain serine protease with a putative role in insect immunity. Gene 251: 9–17.
Dimopoulos G, Muller HM, Levashina EA, Kafatos FC, 2001. Innate immune defense against malaria infection in the mosquito. Curr Opin Immunol 13: 79–88.
Shi L, Paskewitz SM, 2004. Identification and molecular characterization of two immune-responsive chitinase-like proteins from Anopheles gambiae. Insect Mol Biol 13: 387–398.
Shin SW, Kokoza V, Bian G, Cheon HM, Kim YJ, Raikhel AS, 2005. REL1, a homologue of Drosophila dorsal, regulates toll antifungal immune pathway in the female mosquito Aedes aegypti. J Biol Chem 280: 16499–16507.
Cheon HM, Shin SW, Bian G, Park JH, Raikhel AS, 2006. Regulation of lipid metabolism genes, lipid carrier protein lipophorin, and its receptor during immune challenge in the mosquito Aedes aegypti. J Biol Chem 281: 8426–8435.
Cooper DM, Chamberlain CM, Lowenberger C, 2009. Aedes FADD: a novel death domain-containing protein required for antibacterial immunity in the yellow fever mosquito, Aedes aegypti. Insect Biochem Mol Biol 39: 47–54.
Khin MM, Than KA, 1983. Transovarial transmission of dengue 2 virus by Aedes aegypti in nature. Am J Trop Med Hyg 32: 590–594.
Rosen L, Shroyer DA, Tesh RB, Freier JE, Lien JC, 1983. Transovarial transmission of dengue viruses by mosquitoes: Aedes albopictus and Aedes aegypti. Am J Trop Med Hyg 32: 1108–1119.
Hull B, Tikasingh E, de Souza M, Martinez R, 1984. Natural transovarial transmission of dengue 4 virus in Aedes aegypti in Trinidad. Am J Trop Med Hyg 33: 1248–1250.
Freier JE, Rosen L, 1987. Vertical transmission of dengue viruses by mosquitoes of the Aedes scutellaris group. Am J Trop Med Hyg 37: 640–647.
Freier JE, Rosen L, 1988. Vertical transmission of dengue viruses by Aedes mediovittatus. Am J Trop Med Hyg 39: 218–222.
Mitchell CJ, Miller BR, 1990. Vertical transmission of dengue viruses by strains of Aedes albopictus recently introduced into Brazil. J Am Mosq Control Assoc 6: 251–253.
Shroyer DA, 1990. Vertical maintenance of dengue-1 virus in sequential generations of Aedes albopictus. J Am Mosq Control Assoc 6: 312–314.
Bosio CF, Thomas RE, Grimstad PR, Rai KS, 1992. Variation in the efficiency of vertical transmission of dengue-1 virus by strains of Aedes albopictus (Diptera: Culicidae). J Med Entomol 29: 985–989.
Mourya DT, Gokhale MD, Basu A, Barde PV, Sapkal GN, Padbidri VS, Gore MM, 2001. Horizontal and vertical transmission of dengue virus type 2 in highly and lowly susceptible strains of Aedes aegypti mosquitoes. Acta Virol 45: 67–71.
Joshi V, Mourya DT, Sharma RC, 2002. Persistence of dengue-3 virus through transovarial transmission passage in successive generations of Aedes aegypti mosquitoes. Am J Trop Med Hyg 67: 158–161.
Thenmozhi V, Hiriyan JG, Tewari SC, Philip Samuel P, Paramasivan R, Rajendran R, Mani TR, Tyagi BK, 2007. Natural vertical transmission of dengue virus in Aedes albopictus (Diptera: Culicidae) in Kerala, a southern Indian state. Jpn J Infect Dis 60: 245–249.
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 2801 | 2242 | 36 |
Full Text Views | 489 | 18 | 2 |
PDF Downloads | 185 | 13 | 1 |
Dengue virus serotype 2 (DENV-2) RNA replication profiles and tropisms were studied by using quantitative RT-PCR (q-RTPCR) in intrathoracically infected Aedes albopictus. The virus RNA replication profiles were diverse in mosquito organs. In fat body, brain, salivary gland, and malpighian tubes, it peaked at 8, 23, 23, and 27 days post-infection, respectively, and then, all declined. In midgut, it increased all the time and had no trend of decline. In ovary, it had no apparent increase. Subsequent Western blotting of DENV-2 E protein had similar results. Using ribosomal protein 7 (rpS7) as an internal control, we found that, in salivary gland, brain, fat body, and midgut, the average DENV-2 RNA levels (DENV-2 RNA/rpS7 mRNA) were 1,028, 464, 5.6, and 6.2, respectively; in malpighian tubes, it was 1, and in ovary, it was far less than 1. These results suggest that infection profiles and tropism of DENV-2 RNA in Ae. albopictus organs are significantly different.
Authors' addresses: Meichun Zhang, Xiaoying Zheng, Yu Wu, Ming Gan, Ai He, Zhuoya Li, Jing Liu and Ximei Zhan, Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China, E-mails: z02m14c588@yahoo.com.cn, zhengxy@mail.sysu.edu.cn, wuyu@mail.sysu.edu.cn, ganming75@sina.com, heai@mail.sysu.edu.cn, lizhuoya@mail.sysu.edu.cn, liujing-19840729@163.com, and zhanxm@mail.sysu.edu.cn.
Gubler DJ, 2002. The global emergence/resurgence of arboviral diseases as public health problems. Arch Med Res 33: 330–342.
Wilder-Smith A, Schwartz E, 2005. Dengue in travelers. N Engl J Med 353: 924–932.
Guzman MG, Kouri G, 2002. Dengue: an update. Lancet Infect Dis 2: 33–42.
Gratz NG, 2004. Critical review of the vector status of Aedes albopictus. Med Vet Entomol 18: 215–227.
Woodring JL, Higgs S, Beaty BJ, 1996. Natural cycles of vector-borne pathogens. Beaty BJ, Marquardt WC, eds. The Biology of Disease Vectors. Niwot, CO: University Press of Colorado, 51–72.
Gubler DJ, Rosen L, 1976. Variation among geographic strains of Aedes albopictus in susceptibility to infection with dengue viruses. Am J Trop Med Hyg 25: 318–325.
Gubler DJ, Nalim S, Tan R, Saipan H, Sulianti Saroso J, 1979. Variation in susceptibility to oral infection with dengue viruses among geographic strains of Aedes aegypti. Am J Trop Med Hyg 28: 1045–1052.
Tardieux I, Poupel O, Lapchin L, Rodhain F, 1990. Variation among strains of Aedes aegypti in susceptibility to oral infection with dengue virus type 2. Am J Trop Med Hyg 43: 308–313.
Sumanochitrapon W, Strickman D, Sithiprasasna R, Kittayapong P, Innis BL, 1998. Effect of size and geographic origin of Aedes aegypti on oral infection with dengue-2 virus. Am J Trop Med Hyg 58: 283–286.
Vazeille-Falcoz M, Mousson L, Rodhain F, Chungue E, Failloux AB, 1999. Variation in oral susceptibility to dengue type 2 virus of populations of Aedes aegypti from the islands of Tahiti and Moorea, French Polynesia. Am J Trop Med Hyg 60: 292–299.
Bennett KE, Olson KE, Munoz Mde L, Fernandez-Salas I, Farfan-Ale JA, Higgs S, Black WCT, Beaty BJ, 2002. Variation in vector competence for dengue 2 virus among 24 collections of Aedes aegypti from Mexico and the United States. Am J Trop Med Hyg 67: 85–92.
Vazeille M, Rosen L, Mousson L, Failloux AB, 2003. Low oral receptivity for dengue type 2 viruses of Aedes albopictus from southeast Asia compared with that of Aedes aegypti. Am J Trop Med Hyg 68: 203–208.
Bosio CF, Beaty BJ, Black WCT, 1998. Quantitative genetics of vector competence for dengue-2 virus in Aedes aegypti. Am J Trop Med Hyg 59: 965–970.
Bosio CF, Fulton RE, Salasek ML, Beaty BJ, Black WCT, 2000. Quantitative trait loci that control vector competence for dengue-2 virus in the mosquito Aedes aegypti. Genetics 156: 687–698.
Sylla M, Bosio C, Urdaneta-Marquez L, Ndiaye M, Black WCT, 2009. Gene flow, subspecies composition, and dengue virus-2 susceptibility among Aedes aegypti collections in Senegal. PLoS Negl Trop Dis 3: e408.
Sriurairatna S, Bhamarapravati N, 1977. Replication of dengue-2 virus in Aedes albopictus mosquitoes. An electron microscopic study. Am J Trop Med Hyg 26: 1199–1205.
Kuberski T, 1979. Fluorescent antibody studies on the development of dengue-2 virus in Aedes albopictus (Diptera: Culicidae). J Med Entomol 16: 343–349.
Chen WJ, Wei HL, Hsu EL, Chen ER, 1993. Vector competence of Aedes albopictus and Ae. aegypti (Diptera: Culicidae) to dengue 1 virus on Taiwan: development of the virus in orally and parenterally infected mosquitoes. J Med Entomol 30: 524–530.
Linthicum KJ, Platt K, Myint KS, Lerdthusnee K, Innis BL, Vaughn DW, 1996. Dengue 3 virus distribution in the mosquito Aedes aegypti: an immunocytochemical study. Med Vet Entomol 10: 87–92.
Salazar MI, Richardson JH, Sanchez-Vargas I, Olson KE, Beaty BJ, 2007. Dengue virus type 2: replication and tropisms in orally infected Aedes aegypti mosquitoes. BMC Microbiol 7: 9.
Molina-Cruz A, Gupta L, Richardson J, Bennett K, Black WT, Barillas-Mury C, 2005. Effect of mosquito midgut trypsin activity on dengue-2 virus infection and dissemination in Aedes aegypti. Am J Trop Med Hyg 72: 631–637.
Richardson J, Molina-Cruz A, Salazar MI, Black WT, 2006. Quantitative analysis of dengue-2 virus RNA during the extrinsic incubation period in individual Aedes aegypti. Am J Trop Med Hyg 74: 132–141.
Rosen L, Gubler D, 1974. The use of mosquitoes to detect and propagate dengue viruses. Am J Trop Med Hyg 23: 1153–1160.
Wu Y, Parthasarathy R, Bai H, Palli SR, 2006. Mechanisms of midgut remodeling: juvenile hormone analog methoprene blocks midgut metamorphosis by modulating ecdysone action. Mech Dev 123: 530–547.
Gubler DJ, Novak RJ, Vergne E, Colon NA, Velez M, Fowler J, 1985. Aedes (Gymnometopa) mediovittatus (Diptera: Culicidae), a potential maintenance vector of dengue viruses in Puerto Rico. J Med Entomol 22: 469–475.
Watts DM, Burke DS, Harrison BA, Whitmire RE, Nisalak A, 1987. Effect of temperature on the vector efficiency of Aedes aegypti for dengue 2 virus. Am J Trop Med Hyg 36: 143–152.
Johnson BW, Chambers TV, Crabtree MB, Bhatt TR, Guirakhoo F, Monath TP, Miller BR, 2002. Growth characteristics of ChimeriVax-DEN2 vaccine virus in Aedes aegypti and Aedes albopictus mosquitoes. Am J Trop Med Hyg 67: 260–265.
Armstrong PM, Rico-Hesse R, 2001. Differential susceptibility of Aedes aegypti to infection by the American and southeast Asian genotypes of dengue type 2 virus. Vector Borne Zoonotic Dis 1: 159–168.
Armstrong PM, Rico-Hesse R, 2003. Efficiency of dengue serotype 2 virus strains to infect and disseminate in Aedes aegypti. Am J Trop Med Hyg 68: 539–544.
Johnson BW, Chambers TV, Crabtree MB, Guirakhoo F, Monath TP, Miller BR, 2004. Analysis of the replication kinetics of the ChimeriVax-DEN 1, 2, 3, 4 tetravalent virus mixture in Aedes aegypti by real-time reverse transcriptase-polymerase chain reaction. Am J Trop Med Hyg 70: 89–97.
Gubler DJ, Rosen L, 1977. Quantitative aspects of replication of dengue viruses in Aedes albopictus (Diptera: Culicidae) after oral and parenteral infection. J Med Entomol 31: 469–472.
Romoser WS, Faran ME, Bailey CL, Lerdthusnee K, 1992. An immunocytochemical study of the distribution of Rift Valley fever virus in the mosquito Culex pipiens. Am J Trop Med Hyg 46: 489–501.
Sanchez-Vargas I, Scott JC, Poole-Smith BK, Franz AW, Barbosa-Solomieu V, Wilusz J, Olson KE, Blair CD, 2009. Dengue virus type 2 infections of Aedes aegypti are modulated by the mosquito's RNA interference pathway. PLoS Pathog 5: e1000299.
Weaver SC, Scott TW, Lorenz LH, Lerdthusnee K, Romoser WS, 1988. Togavirus-associated pathologic changes in the midgut of a natural mosquito vector. J Virol 62: 2083–2090.
Romoser WS, Wasieloski LP Jr, Pushko P, Kondig JP, Lerdthusnee K, Neira M, Ludwig GV, 2004. Evidence for arbovirus dissemination conduits from the mosquito (Diptera: Culicidae) midgut. J Med Entomol 41: 467–475.
Romoser WS, Turell MJ, Lerdthusnee K, Neira M, Dohm D, Ludwig G, Wasieloski L, 2005. Pathogenesis of Rift Valley fever virus in mosquitoes—tracheal conduits and the basal lamina as an extra-cellular barrier. Arch Virol Suppl 19: 89–100.
Sanders HR, Foy BD, Evans AM, Ross LS, Beaty BJ, Olson KE, Gill SS, 2005. Sindbis virus induces transport processes and alters expression of innate immunity pathway genes in the midgut of the disease vector, Aedes aegypti. Insect Biochem Mol Biol 35: 1293–1307.
Bryant B, Blair CD, Olson KE, Clem RJ, 2008. Annotation and expression profiling of apoptosis-related genes in the yellow fever mosquito, Aedes aegypti. Insect Biochem Mol Biol 38: 331–345.
Campbell CL, Keene KM, Brackney DE, Olson KE, Blair CD, Wilusz J, Foy BD, 2008. Aedes aegypti uses RNA interference in defense against Sindbis virus infection. BMC Microbiol 8: 47.
Xi Z, Ramirez JL, Dimopoulos G, 2008. The Aedes aegypti toll pathway controls dengue virus infection. PLoS Pathog 4: e1000098.
Platt KB, Linthicum KJ, Myint KS, Innis BL, Lerdthusnee K, Vaughn DW, 1997. Impact of dengue virus infection on feeding behavior of Aedes aegypti. Am J Trop Med Hyg 57: 119–125.
Raikhel AS, Deitsch KW, Sappington TW, 1997. Culture and analysis of the insect fat body. Crampton JM, Beard CB, Louis C, eds. Molecular Biology of Insect Disease Vectors. London: Chapman Hall, 507–522.
Dimopoulos G, Richman A, Muller HM, Kafatos FC, 1997. Molecular immune responses of the mosquito Anopheles gambiae to bacteria and malaria parasites. Proc Natl Acad Sci USA 94: 11508–11513.
Gorman MJ, Andreeva OV, Paskewitz SM, 2000. Sp22D: a multidomain serine protease with a putative role in insect immunity. Gene 251: 9–17.
Dimopoulos G, Muller HM, Levashina EA, Kafatos FC, 2001. Innate immune defense against malaria infection in the mosquito. Curr Opin Immunol 13: 79–88.
Shi L, Paskewitz SM, 2004. Identification and molecular characterization of two immune-responsive chitinase-like proteins from Anopheles gambiae. Insect Mol Biol 13: 387–398.
Shin SW, Kokoza V, Bian G, Cheon HM, Kim YJ, Raikhel AS, 2005. REL1, a homologue of Drosophila dorsal, regulates toll antifungal immune pathway in the female mosquito Aedes aegypti. J Biol Chem 280: 16499–16507.
Cheon HM, Shin SW, Bian G, Park JH, Raikhel AS, 2006. Regulation of lipid metabolism genes, lipid carrier protein lipophorin, and its receptor during immune challenge in the mosquito Aedes aegypti. J Biol Chem 281: 8426–8435.
Cooper DM, Chamberlain CM, Lowenberger C, 2009. Aedes FADD: a novel death domain-containing protein required for antibacterial immunity in the yellow fever mosquito, Aedes aegypti. Insect Biochem Mol Biol 39: 47–54.
Khin MM, Than KA, 1983. Transovarial transmission of dengue 2 virus by Aedes aegypti in nature. Am J Trop Med Hyg 32: 590–594.
Rosen L, Shroyer DA, Tesh RB, Freier JE, Lien JC, 1983. Transovarial transmission of dengue viruses by mosquitoes: Aedes albopictus and Aedes aegypti. Am J Trop Med Hyg 32: 1108–1119.
Hull B, Tikasingh E, de Souza M, Martinez R, 1984. Natural transovarial transmission of dengue 4 virus in Aedes aegypti in Trinidad. Am J Trop Med Hyg 33: 1248–1250.
Freier JE, Rosen L, 1987. Vertical transmission of dengue viruses by mosquitoes of the Aedes scutellaris group. Am J Trop Med Hyg 37: 640–647.
Freier JE, Rosen L, 1988. Vertical transmission of dengue viruses by Aedes mediovittatus. Am J Trop Med Hyg 39: 218–222.
Mitchell CJ, Miller BR, 1990. Vertical transmission of dengue viruses by strains of Aedes albopictus recently introduced into Brazil. J Am Mosq Control Assoc 6: 251–253.
Shroyer DA, 1990. Vertical maintenance of dengue-1 virus in sequential generations of Aedes albopictus. J Am Mosq Control Assoc 6: 312–314.
Bosio CF, Thomas RE, Grimstad PR, Rai KS, 1992. Variation in the efficiency of vertical transmission of dengue-1 virus by strains of Aedes albopictus (Diptera: Culicidae). J Med Entomol 29: 985–989.
Mourya DT, Gokhale MD, Basu A, Barde PV, Sapkal GN, Padbidri VS, Gore MM, 2001. Horizontal and vertical transmission of dengue virus type 2 in highly and lowly susceptible strains of Aedes aegypti mosquitoes. Acta Virol 45: 67–71.
Joshi V, Mourya DT, Sharma RC, 2002. Persistence of dengue-3 virus through transovarial transmission passage in successive generations of Aedes aegypti mosquitoes. Am J Trop Med Hyg 67: 158–161.
Thenmozhi V, Hiriyan JG, Tewari SC, Philip Samuel P, Paramasivan R, Rajendran R, Mani TR, Tyagi BK, 2007. Natural vertical transmission of dengue virus in Aedes albopictus (Diptera: Culicidae) in Kerala, a southern Indian state. Jpn J Infect Dis 60: 245–249.
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 2801 | 2242 | 36 |
Full Text Views | 489 | 18 | 2 |
PDF Downloads | 185 | 13 | 1 |