Genetic Structure of Anopheles (Nyssorhynchus) marajoara (Diptera: Culicidae) in Colombia

Helena Brochero Laboratorio de Entomología, Instituto Nacional de Salud, Bogotá DC, Colombia; Facultad de Agronomía, Universidad Nacional de Colombia, Ciudad Universitaria, Bogotá DC, Colombia; Division of Entomology, Walter Reed Army Institute of Research, Silver Spring, Maryland; Griffin Laboratory, Wadsworth Center, NYSDOH, Slingerlands, New York; Laboratorio de Genética de Poblaciones Molecular-Biología Evolutiva, Unidad de Genética, Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá DC, Colombia

Search for other papers by Helena Brochero in
Current site
Google Scholar
PubMed
Close
,
Cong Li Laboratorio de Entomología, Instituto Nacional de Salud, Bogotá DC, Colombia; Facultad de Agronomía, Universidad Nacional de Colombia, Ciudad Universitaria, Bogotá DC, Colombia; Division of Entomology, Walter Reed Army Institute of Research, Silver Spring, Maryland; Griffin Laboratory, Wadsworth Center, NYSDOH, Slingerlands, New York; Laboratorio de Genética de Poblaciones Molecular-Biología Evolutiva, Unidad de Genética, Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá DC, Colombia

Search for other papers by Cong Li in
Current site
Google Scholar
PubMed
Close
,
Richard Wilkerson Laboratorio de Entomología, Instituto Nacional de Salud, Bogotá DC, Colombia; Facultad de Agronomía, Universidad Nacional de Colombia, Ciudad Universitaria, Bogotá DC, Colombia; Division of Entomology, Walter Reed Army Institute of Research, Silver Spring, Maryland; Griffin Laboratory, Wadsworth Center, NYSDOH, Slingerlands, New York; Laboratorio de Genética de Poblaciones Molecular-Biología Evolutiva, Unidad de Genética, Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá DC, Colombia

Search for other papers by Richard Wilkerson in
Current site
Google Scholar
PubMed
Close
,
Jan E. Conn Laboratorio de Entomología, Instituto Nacional de Salud, Bogotá DC, Colombia; Facultad de Agronomía, Universidad Nacional de Colombia, Ciudad Universitaria, Bogotá DC, Colombia; Division of Entomology, Walter Reed Army Institute of Research, Silver Spring, Maryland; Griffin Laboratory, Wadsworth Center, NYSDOH, Slingerlands, New York; Laboratorio de Genética de Poblaciones Molecular-Biología Evolutiva, Unidad de Genética, Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá DC, Colombia

Search for other papers by Jan E. Conn in
Current site
Google Scholar
PubMed
Close
, and
Manuel Ruiz-García Laboratorio de Entomología, Instituto Nacional de Salud, Bogotá DC, Colombia; Facultad de Agronomía, Universidad Nacional de Colombia, Ciudad Universitaria, Bogotá DC, Colombia; Division of Entomology, Walter Reed Army Institute of Research, Silver Spring, Maryland; Griffin Laboratory, Wadsworth Center, NYSDOH, Slingerlands, New York; Laboratorio de Genética de Poblaciones Molecular-Biología Evolutiva, Unidad de Genética, Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá DC, Colombia

Search for other papers by Manuel Ruiz-García in
Current site
Google Scholar
PubMed
Close
Restricted access

Five Anopheles marajoara Galvão and Damasceno populations, representing diverse ecological conditions, were sampled throughout Colombia and analyzed using nine hypervariable DNA microsatellite loci. The overall genetic diversity (H = 0.58) was lower than that determined for some Brazilian populations using the same markers. The Caquetá population (Colombia) had the lowest gene diversity (H = 0.48), and it was the only population at Hardy–Weinberg equilibrium. Hardy–Weinberg disequilibrium in the remaining four populations was probably caused by the Wahlund effect. The assignment analyses showed two incompletely isolated gene pools separated by the Eastern Andean cordillera. However, other possible geographical barriers (rivers and other mountains) did not play any role in the moderate genetic heterogeneity found among these populations (FST = 0.069). These results are noteworthy, because this species is a putative malaria vector in Colombia.

Author Notes

*Address correspondence to Manuel Ruiz-García, Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá DC, Colombia. E-mail: mruiz@javeriana.edu.co

Authors' addresses: Helena Brochero, Facultad de Agronomía, Universidad Nacional de Colombia, Bogotá DC, Colombia, E-mail: embrochero@unal.edu.co. Cong Li and Richard Wilkerson, Division of Entomology, Walter Reed Army Institute of Research, Silver Spring, MD, E-mails: lic@si.edu and wilkersonr@si.edu. Jan E. Conn, Griffin Laboratory, Wadsworth Center, NYSDOH, Slingerlands, NY, E-mail: jconn@wadsworth.org. Manuel Ruiz-García, Laboratorio de Genética de Poblaciones Molecular-Biología Evolutiva, Unidad de Genética, Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Cra 7ª. No 43-82, Bogotá DC, Colombia, E-mails: mruiz@javeriana.edu.co or mruizgar@yahoo.es.

  • 1.

    Cortés J, Caraballo A, Contreras C, Plowe C, 2002. Origin and dissemination of Plasmodium falciparum drug-resistance mutations in South America. J Infect Dis 186: 9991006.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Mendoza M, Nicholls R, Olano V, Cortés L, 2000. Situación de la malaria en Colombia. Manual de Manejo integral de la malaria. Instituto Nacional de Salud Ed. Bogotá, Columbia: Instituto Nacional de Salud.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Herrera S, Suárez M, Sánchez G, Quiñones M, Herrera M, 1987. Uso de la técnica inmunoradiometrica (IRMA) en Anopheles de Colombia para la identificación de esporozoitos de Plasmodium. Colomb Med 18: 5760.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Collins W, Warren W, Skinner J, Sutton B, 1985. Infectivity of Plasmodium vivax to Anopheles albitarsis mosquitoes from Colombia. J Parasitol 71: 771773.

  • 5.

    Quiñones M, Suárez M, 1990. Indoor resting heights of some anophelines in Colombia. J Am Mosq Control Assoc 6: 602604.

  • 6.

    Brochero H, Rey G, Buitrago L, Olano V, 2005. Biting activity and breeding places of Anopheles species in the municipality Villavicencio, Meta, Colombia. J Am Mosq Control Assoc 21: 182186.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Servicio de Erradicación de la Malaria (SEM), 1957. Plan de erradicación de la malaria en Colombia. Volumen I y II. Ministerio de Salud Nacional. Bogotá, Columbia: Ministerio Nacional de Salud.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Rubio-Palis Y, Zimmermann R, 1997. Ecoregional classification of malaria vectors in the Neotropics. J Med Entomol 34: 499510.

  • 9.

    Conn J, Wilkerson R, Nazaré M, Segura O, Raimundo T, De Souza L, 2002. Emergence of a new neotropical malaria vector facilitated by human migration and changes in land use. Am J Trop Med Hyg 66: 1822.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Brochero H, Li C, Wilkerson R, 2007. A previously unrecognized species in the Anopheles (Nyssorhynchus) albitarsis complex (Diptera: Culicidae) from Puerto Carreño, Colombia. Am J Trop Med Hyg 76: 11131117.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Motoki M, Wilkerson R, Sallum M, 2009. The Anopheles albitarsis complex with the recognition of Anopheles oryzalimnetes Wilkerson and Motoki, n. sp. and Anopheles janconnae Wilkerson and Sallum, n. sp. (Diptera: Culicidae). Mem Inst Oswaldo Cruz 104: 823850.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Narang S, Klein T, Perera O, Lima J, Tang A, 1993. Genetic evidence for the existence of cryptic species in the Anopheles albitarsis complex in Brazil: allozymes and mitochondrial DNA restriction fragment length polymorphism. Biochem Genet 1: 97112.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Conn J, Mitchell S, Cockburn A, 1997. Mitochondrial DNA variation within and between two species of neotropical Anopheline mosquitoes (Diptera: Culicidae). J Hered 88: 98107.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Posso C, González R, Cárdenas H, Tascón R, 2006. Estructura genética de Anopheles darlingi Root, An. nuneztovari Gabaldon y An. marajoara Galvão & Damasceno de Colombia mediante RAPD-PCR. Revista Colombiana de Entomología 32: 4956.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Faran M, Linthicum K, 1981. A handbook of the Amazonian species of Anopheles (Nyssorhynchus). Mosq Syst 13: 185.

  • 16.

    Li C, Wilkerson R, 2005. Identification of Anopheles (Nyssorhynchus) Albitarsis complex species (Diptera: Culicidae) using rDNA ITS2-based PCR primers. Mem Inst Oswaldo Cruz 100: 495500.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Besansky N, Fahey T, 1997. Utility of the white gene in estimating phylogenetic relationships among mosquitoes (Diptera:Culicidae). Mol Biol Evol 14: 442444.

  • 18.

    Wilkerson R, Parson T, Albringht T, Klein T, Braun M, 1993. Random amplified polymorphic DNA (RAPD) markers readily distinguish cryptic mosquito species (Diptera: Culicidae: Anopheles). Insect Mol Biol 1: 205211.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Li C, Wilkerson R, Fonseca D, 2005. Isolation of polmorphic microsatellite markers from the malaria vector Anopheles (Nyssorhynchus) marajoara. (Diptera: Culicidae). Mol Ecol Notes 5: 6567.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Nei M, 1973. Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70: 33213323.

  • 21.

    Archie JW, 1985. Statistical analysis of heterozygosity data: independent sample comparisons. Evolution 39: 623637.

  • 22.

    Weir B, Cokerham C, 1984. Estimating F statistics for the analysis of population structure. Evolution 38: 13581370.

  • 23.

    Raymond M, Rousset F, 1995. GenePop version 3.1 population genetics software for exact tests and ecumenicism. J Hered 86: 248249.

  • 24.

    Raymond M, Rousset F, 2003. Updated version of GenePop version 3.1 described in: Raymond M, Rousset F. 1995. Population genetics software for exact tests and ecumenicism. J Hered 86: 248249.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Wright S, 1951. The genetical structure of populations. Ann Eugen 15: 323354.

  • 26.

    Goudet J, Raymond M, de Meeus T, Rousset F, 1996. Testing differentiation in diploid populations. Genetics 144: 19331940.

  • 27.

    Goudet J, 2002. FSTAT, a Program to Estimate and Test Gene Diversities and Fixation Indices (version 2.9.1). Switzerland: Institute of Ecology, University of Laussane.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Slatkin M, 1995. A measure of population subdivision based on microsatellite allele frequencies. Genetics 139: 457462.

  • 29.

    Rouset F, 1997. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145: 12191228.

  • 30.

    Goodman S, 1997. RST CALC: a collection of computer programs for calculating unbiased estimates of genetic differentiation and determining their significance for microsatellite data. Mol Ecol 6: 881885.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Ruiz-García M, 1993. Analysis of the evolution and genetic diversity within and between Balearic and Iberian cat populations. J Hered 84: 173180.

  • 32.

    Ruiz-García M, 1998. Genetic structure and evolution of different cat populations (Felis catus) in Spain, Italy, Argentina at microgeographical level. Acta Theriol (Warsz) 43: 3966.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Ruiz-García M, Alvarez D, 2000. Genetic microstructure in two Spanish cat populations. I: genetic diversity, gene flow and selection. Genes Genet Syst 75: 269280.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Takahata N, 1983. Gene identity and genetic differentiation of populations in the finite island model. Genetics 104: 497512.

  • 35.

    Crow J, Aoki K, 1984. Group selection for a polygenic behavioural trait. Proc Natl Acad Sci USA 81: 60736077.

  • 36.

    Slatkin M, 1985. Rare alleles as indicators of gene flow. Evolution 39: 5365.

  • 37.

    Barton N, Slatkin M, 1986. A quasi-equilibrium theory of the distribution of rare alleles in a subdivided population. Heredity 56: 409415.

  • 38.

    Pritchard J, Stephens M, Donnelly P, 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945959.

  • 39.

    Lehr M, Kilpatrick C, Wilkerson R, Conn J, 2005. Cryptic species in the Anopheles (Nyssorhynchus) albitarsis (Diptera: Culicidae) complex: incongruence between RAPD-PCR identification and analysis of mtDNA COI gene sequences. Ann Entomol Soc Am 98: 908917.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Cornuet J, Piry D, Luikart G, Estoup A, Solignac M, 1999. New methods employing multilocus genotypes to select or exclude populations as origins of individuals. Genetics 153: 19892000.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Luikart G, Sherwin W, Steele B, Allendorf F, 1998. Usefulness of molecular markers for detecting population bottlenecks via monitoring genetic changes. Mol Ecol 7: 963974.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Garza JC, Williamson EG, 2001. Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10: 305318.

  • 43.

    Reich DE, Goldstein DB, 1998. Genetic evidence for a Paleolitic human population expansion in Africa. Proc Natl Acad Sci USA 95: 81198123.

  • 44.

    Reich DE, Feldman MW, Goldstein DB, 1999. Statistical properties of two tests that use multilocus data sets to detect population expansions. Mol Biol Evol 16: 453466.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Kimmel M, Chakravorty R, King JP, Bamshad M, Watkins WS, Jorde LB, 1998. Signatures of population expansion in microsatellite repeat data. Genetics 148: 19211930.

  • 46.

    Zhivotovsky LA, Bennett L, Bowcock AM, Feldman MW, 2000. Human population expansion and microsatellite variation. Mol Biol Evol 17: 757767.

  • 47.

    Beumont M, 1999. Detecting population expansions and decline using microsatellites. Genetics 153: 20132029.

  • 48.

    Conn J, Vineis J, Bollback J, Onyabe D, Wilkerson R, Povoa M, 2006. Population structure of the malaria vector Anopheles darlingi in a malaria-endemic region of eastern Amazonian Brazil. Am J Trop Med Hyg 74: 798806.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Molina-Cruz A, De Mérida A, Mills K, Rodriguez F, Schoua C, Yurrita M, Molina E, Palmieri M, Black W IV, 2004. Gene flow among Anopheles albimanus populations in Central America, South America and the Caribbean assessed by microsatellites and mitochondrial DNA. Am J Trop Med Hyg 71: 350359.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Lehmann T, Hawley W, Grebert H, Danga M, Atieli F, Collins F, 1999. The Rift Valley complex as a barrier to gene flow for Anopheles gambiae in Kenya. J Hered 90: 613621.

  • 51.

    Lehmann T, Licht M, Elissa N, Maega T, Chimumbwa J, Watsenga T, Wondji C, Simard F, Hawley W, 2003. Population structure of Anopheles gambiae in Africa. J Hered 94: 133147.

  • 52.

    Norris D, Shurtleff A, Touré Y, Lanzaro G, 2001. Microsatellite DNA polymorphism and heterozygosity among field and laboratory populations of Anopheles gambiae (Diptera: Culicidae). J Med Entomol 38: 336340.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Wondji C, Simard F, Fontenille D, 2002. Evidence for genetic differentiation between the molecular forms M and S within the Forest chromosomal form of Anopheles gambiae in an area of sympatry. Insect Mol Biol 11: 1119.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Rongnoparut R, Sirichotpakorn N, Rattanarithikul R, Yaicharoen S, Lithincum K, 1999. Estimates of gene flow among Anopheles maculatus populations in Thailand using microsatellite analysis. Am J Trop Med Hyg 60: 508515.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Onyabe D, Conn J, 2001. Genetic differentiation of the malaria vector Anopheles gambiae across Nigeria suggests that selection limits gene flow. Heredity 87: 647658.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Estrada-Franco J, Lanzaro G, Ma M, Walker-Abbey A, Romans P, Galvan-Sanchez C, Céspedes J, Vargas-Sagarnaga R, Laughinghouse A, Columbus I, Gwadz R, 1993. Characterization of Anopheles pseudopunctipennis sensu lato from three countries of neotropical America from variation in allozymes and ribosomal DNA. Am J Trop Med Hyg 49: 735745.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Goldstein B, Ruiz-Linares A, Cavalli-Sforza L, Feldman W, 1995. Genetic absolute dating on microsatellites and the origin of modern humans. Proc Natl Acad Sci USA 92: 67236727.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Kamau L, Mukabana W, Hawley W, Lehmann T, Irungu L, Orago A, Collins F, 1999. Analysis of genetic variability in Anopheles arabiensis and Anopheles gambiae using microsatellite loci. Insect Mol Biol 8: 287297.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Kamau L, Hunt R, Coetzee M, 2002. Analysis of the population structure of Anopheles funestus Giles (Diptera: Culicidae) from Kenya using paracentric chromosomal inversion frequencies. J Med Entomol 39: 7883.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Mendes dos Santos J, Freitas Maia J, Tadeo P, Diaz G, 2003. Isoenzymatic variability among five Anopheles species belonging to the Nyssorhynchus and Anopheles subgenera of the Amazon Region, Brazil. Mem Inst Oswaldo Cruz 98: 247253.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Coluzzi M, Sabatini A, Petrarca V, Di Deco M, 1979. Chromosomal differentiation and adaptation to human environments in the Anopheles gambiae complex. Trans R Soc Trop Med Hyg 73: 483497.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Lanzaro G, Toure Y, Carnahans J, Zheng L, Dolo G, Traore S, Petrarca V, Vernic K & Taylor C. 1998. Complexities in the genetic structure of Anopheles gambiae populations in West Africa as revealed by microsatellite DNA analysis. Proc Natl Acad Sci USA 95:1426014265.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Mirabello L, Conn J, 2006. Molecular population genetics of the malaria vector Anopheles darlingi in Central and South America. Heredity 96: 311321.

  • 64.

    Ravel S, Monteny N, Velasco Olmos D, Escalante Verdugo J, Cuny G, 2001. A preliminary study of the population genetics of Aedes aegypti (Diptera: Culicidae) from Mexico using microsatellite and AFLP markers. Acta Trop 78: 241250.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Bosio CF, Harrington LC, Jones JW, Sithiprasasna R, Norris DE, Scott TW, 2005. Genetic structure of Aedes aegypti populations in Thailand using mitochondrial DNA. Am J Trop Med Hyg 72: 434442.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Herrera F, Urdaneta L, Rivero J, Zoghbi N, Ruiz J, Carrasquel G, Martinez JA, Pernalete M, Villegas P, Montoya A, Rubio-Palis Y, Rojas E, 2006. Population genetic structure of the dengue mosquito Aedes aegypti in Venezuela. Mem Inst Oswaldo Cruz 10: 625633.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    Lehmann T, Hawley W, Grebert H, Collins F, 1998. The effective population size of Anopheles gambiae in Kenya: implications for population structure. Mol Biol Evol 15: 264276.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    Ruiz-García M, Ramírez D, Bello F, Alvarez D, 2003. Psorophora columbiae and Psorophora toltecum (Diptera: Culicidae) Colombian populations cannot be differentiated by isoenzymes. Genet Mol Res 2: 229259.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Ruiz-García M, Bello F, Ramírez D, Alvarez D, 2006. Genetic structure of the genera Psorophora (Diptera: Culicidae) in Columbian and North American populations using isoenzymes and ITS2 sequences. Russ J Genet 42: 752765.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70.

    De Souza G, De Dutari GP, Gardenal C, 2000. Genetic structure of Aedes albifasciatus (Diptera Culicidae) populations in Central Argentina determined by random amplified polymorphic DNA-polymerase chain reaction markers. J Med Entomol 86: 400404.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 71.

    Scarpassa V, Geurgas S, Azeredo-Espin A, Tadei W, 2000. Genetic divergence in mitochondrial DNA of Anopheles nuneztovari (Diptera: Culicidae) from Brazil and Colombia. Genet Mol Biol 23: 7178.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72.

    Dinardo-Miranda L, Contel E, 1996. Enzymatic variability in natural populations of Aedes aegypti (Diptera: Culicidae) from Brazil. J Med Entomol 33: 726733.

  • 73.

    De Souza G, Jimenez A, Blanco A, Gardenal C, 1996. Gene flow in Aedes albifasciatus (Diptera: Culicidae) from Central Argentina. J Med Entomol 33: 894900.

  • 74.

    Ravel S, Monteny N, Velasco Olmos D, Escalante Verdugo J, Cuny G, 2001. A preliminary study of the population genetics of Aedes aegypti (Diptera: Culicidae) from Mexico using microsatellites and AFLP markers. Acta Trop 78: 241250.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 75.

    Vazeille M, Mousson L, Rakatoarivony I, Villeret R, Rodhain F, Duchemin JB, Failloux AB, 2001. Population genetic structure and competence as a vector for dengue type 2 virus of Aedes aegypti and Aedes albopictus from Madagascar. Am J Trop Med Hyg 65: 491497.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 76.

    García-Franco F, Lourdes Muñoz M, Lozano-Fuentes S, Fernandez-Salas I, García-Rejon J, Beaty BJ, Black WC IV, 2002. Large genetic distances among Aedes aegypti populations along the South Pacific coast of Mexico. Am J Trop Med Hyg 64: 594598.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 77.

    Ministerio de la Protección Social, Instituto Nacional de Saud, 2009. Sistema nacional de vigilancia SIVIGILA, 2009. Informe Quincenal Epidemiológico Nacional 14: 4769.

    • PubMed
    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 554 483 23
Full Text Views 222 12 0
PDF Downloads 77 14 0
 

 

 

 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save