• 1.

    Belkaid Y, Kamhawi S, Modi G, Valenzuela J, Noben-Trauth N, Rowton E, Ribeiro J, Sacks DL, 1998. Development of a natural model of cutaneous leishmaniasis: powerful effects of vector saliva and saliva pre-exposure on the long-term outcome of Leismania major infection in the mouse ear dermis. J Exp Med 188: 19411953.

    • Search Google Scholar
    • Export Citation
  • 2.

    Kamhawi S, Belkaid Y, Modi G, Rowton E, Sacks D, 2000. Protection against cutaneous leishmaniasis resulting from bites of uninfected sand flies. Science 290: 13511354.

    • Search Google Scholar
    • Export Citation
  • 3.

    Valenzuela J, Belkaid Y, Garfiela MK, Mendez S, Kamhawi S, Rowton E, Sacks D, Ribeiro JMC, 2001. Toward a defined anti-Leishmania vaccine targeting vector antigens: characterization of a protective salivary protein. J Exp Med 194: 331342.

    • Search Google Scholar
    • Export Citation
  • 4.

    Handman E, 2001. Protective saliva: a novel approach to a Leishmania vaccine. Trends Parasitol 17: 513514.

  • 5.

    Ben Hadj Ahmed S, Chelbi I, Kaabi B, Cherni S, Derbali M, Zhioua E, 2010. Differences in the salivary effects of wild-caught versus colonized Phlebotomus papatasi (Diptera: Psychodidae) on the development of zoonotic cutaneous leishmaniasis in BALB/c mice. J Med Entomol 47: 7479.

    • Search Google Scholar
    • Export Citation
  • 6.

    Laurenti MD, Silveira VM, Secundino NF, Corbett CE, Pimenta PP, 2009. Saliva of laboratory-reared Lutzomyia longipalpis exacerbates Leishmania (leishmania) amazonensis infection more potently than saliva of wild-caught Lutzomyia longipalpis. Parasitol Int 58: 220226.

    • Search Google Scholar
    • Export Citation
  • 7.

    Laurenti MD, da Matta VL, Pernichelli T, Secundino NF, Pinto LC, Corbett CE, Pimenta PP, 2009. Effects of saliva gland homogenate from wild-caught and laboratory-reared Lutzomyia longipalpis on the evolution and immunomodulation of Leishmania (leishmania) amazonensis infection. Scand J Immunol 70: 389395.

    • Search Google Scholar
    • Export Citation
  • 8.

    Chelbi I, Zhioua E, 2007. Biology of Phlebotomus papatasi (Diptera: Psychodidae) in the laboratory. J Med Entomol 44: 597600.

  • 9.

    Chelbi I, Derbali M, AL-Ahmadi Z, Zaafouri B, El Fahem A, Zhioua E, 2007. Phenology of Phlebotomus papatasi (Diptera: Psychodidae) relative to the seasonal prevalence of zoonotic cutaneous leishmaniasis in central Tunisia. J Med Entomol 44: 385388.

    • Search Google Scholar
    • Export Citation
  • 10.

    Laird NM, Ware JH, 1982. Random-effect models for longitudinal data. Biometrics 38: 963974.

  • 11.

    Bauer DF, 1972. Constructing confidence sets using rank statistics. J Am Stat Assoc 67: 687690.

  • 12.

    Holm S, 1979. A simple sequentially rejective multiple test procedure. Scand J Stat 6: 6570.

  • 13.

    Elnaiem DEA, Menesses C, Slotman M, Lanzaro GC, 2005. Genetic variation in the sand fly salivary protein, SP-15, a potential vaccine candidate against Leishmania major. Insect Mol Biol 14: 145150.

    • Search Google Scholar
    • Export Citation
  • 14.

    Lanzaro GC, Lopes AHCS, Riberiro JMC, Shoemaker CB, Warburg A, Soares M, Titus RG, 1999. Variation in the salivary peptide, maxadilan from species in the Lutzomyia longipalpis complex. Insect Mol Biol 8: 267275.

    • Search Google Scholar
    • Export Citation
  • 15.

    Milleron RS, Mutebi JP, Valle S, Montoya A, Yin H, Soong L, Lanzaro GC, 2004. Antigenic diversity in maxadilan, a salivary protein from the sand fly vector of American visceral leishmaniasis. Am J Trop Med 70: 278293.

    • Search Google Scholar
    • Export Citation
  • 16.

    Morris RV, Shoemaker CB, David JR, Lanzaro GC, Titus R, 2001. Sandfly maxadilan exacerbates infection with Leishmania major and vaccinating against it protects against L. major infection. J Immunol 167: 52265230.

    • Search Google Scholar
    • Export Citation
  • 17.

    Oliveira F, Lawyer PG, Kamhawi S, Valenzuela JG, 2008. Immunity to distinct sand fly salivary proteins primes the anti-Leishmania immune response towards protection or exacerbation of disease. PLOS Neg Trop Dis 2: e226.

    • Search Google Scholar
    • Export Citation
  • 18.

    Gomes R, Teixeira C, Teixeira MJ, Olivera F, Menezes MJ, Silva C, Miranda JC, Kamhawi S, Valenzuela J, Brodskyn CI, 2008. Immunity to a salivary protein of a sand fly vector protects against the fatal outcome of visceral leishmaniasis in a hamster model. Proc Natl Acad Sci USA 105: 78457850.

    • Search Google Scholar
    • Export Citation
  • 19.

    Lorenz L, Beaty BJ, Aitken THG, Wallis GP, Tabachnik WJ, 1984. The effect of colonization upon Aedes aegypti susceptibility to oral infection with yellow fever virus. Am J Trop Med Hyg 33: 690694.

    • Search Google Scholar
    • Export Citation
  • 20.

    Kassem HA, Fryauff DJ, Shehata MG, Sawaf BM, 1993. Enzyme polymorphism and genetic variability of one colonized and several field populations of Phlebotomus papatasi (Diptera: Psychodidae). J Med Entomol 30: 407413.

    • Search Google Scholar
    • Export Citation
  • 21.

    Mukhopadhyay J, Rangel E, Ghosh K, Munstermann LE, 1997. Patterns of genetic variability in colonized strains of Lutzomyia longipalpis (Diptera: Psychodidae) and its consequences. Am J Trop Med Hyg 57: 216221.

    • Search Google Scholar
    • Export Citation
  • 22.

    Lanzaro GC, Warburg A, 1995. Genetic variability in phlebotomine sand flies: possible implication for leishmaniasis epidemiology. Parasitol Today 4: 151154.

    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 164 85 4
PDF Downloads 18 10 1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Lack of Protection of Pre-Immunization with Saliva of Long-Term Colonized Phlebotomus papatasi against Experimental Challenge with Leishmania major and Saliva of Wild-Caught P. papatasi

View More View Less
  • Laboratory of Vector Ecology, Laboratory of Epidemiology and Ecology of Parasites, and Laboratory of Immuno-Pathology, Vaccinology, and Molecular Genetics, Institut Pasteur de Tunis, Tunis, Tunisia; Department of Biology, University of Gafsa, Gafsa, Tunisia
Restricted access

Immunity to saliva of Phlebotomus papatasi protects against Leishmania major infection as determined by co-inoculation of parasites with salivary gland homogenates (SGHs) of this vector. These results were obtained with long-term colonized female P. papatasi. We investigated the effect of pre-immunization with SGH of long-term colonized P. papatasi against L. major infection co-inoculated with SGH of wild-caught P. papatasi. Our results showed that pre-exposure to SGH of long-term, colonized P. papatasi do not confer protection against infection with L. major co-inoculated with SGH of wild-caught P. papatasi. These preliminary results strongly suggest that the effectiveness of a vector saliva-based vaccine derived from colonized sand fly populations may be affected by inconsistent immune response after natural exposure.

Author Notes

*Address correspondence to Elyes Zhioua, Laboratory of Vector Ecology, Institut Pasteur de Tunis, 13 Place Pasteur, BP 74, 1002 Tunis, Tunisia. E-mail: elyes.zhioua@gmail.com

Financial support: This study was supported by World Health Organization/Tropical Diseases Research grant A60291.

Authors' addresses: Sami Ben Hadj Ahmed, Laboratory of Vector Ecology, Institut Pasteur de Tunis, 13 Place Pasteur, BP 74, 1002 Tunis, Tunisia, and Department of Biology, University of Gafsa, Gafsa, Tunisia. Belhassen Kaabi, Laboratory of Epidemiology and Ecology of Parasites, Institut Pasteur de Tunis, 13 Place Pasteur, BP 74, 1002 Tunis, Tunisia. Ifhem Chelbi, Mohamed Derbali, Safedine Cherni, and Elyes Zhioua, Laboratory of Vector Ecology, Institut Pasteur de Tunis, 13 Place Pasteur, BP 74, 1002 Tunis, Tunisia. Dhafer Laouni, Laboratory of Immuno-Pathology, Vaccinology, and Molecular Genetic, Institut Pasteur de Tunis, 13 Place Pasteur, BP 74, 1002 Tunis, Tunisia.

Save