Comparing the Effectiveness of Malaria Vector-Control Interventions Through a Mathematical Model

Nakul Chitnis Department of Public Health and Epidemiology, Swiss Tropical and Public Health Institute, Basel, Switzerland; MACEPA, PATH, Ferney-Voltaire, France

Search for other papers by Nakul Chitnis in
Current site
Google Scholar
PubMed
Close
,
Allan Schapira Department of Public Health and Epidemiology, Swiss Tropical and Public Health Institute, Basel, Switzerland; MACEPA, PATH, Ferney-Voltaire, France

Search for other papers by Allan Schapira in
Current site
Google Scholar
PubMed
Close
,
Thomas Smith Department of Public Health and Epidemiology, Swiss Tropical and Public Health Institute, Basel, Switzerland; MACEPA, PATH, Ferney-Voltaire, France

Search for other papers by Thomas Smith in
Current site
Google Scholar
PubMed
Close
, and
Richard Steketee Department of Public Health and Epidemiology, Swiss Tropical and Public Health Institute, Basel, Switzerland; MACEPA, PATH, Ferney-Voltaire, France

Search for other papers by Richard Steketee in
Current site
Google Scholar
PubMed
Close
Restricted access

Although some malaria-control programs are beginning to combine insecticide-treated nets (ITNs) and indoor residual spraying (IRS), little is known about the effectiveness of such combinations. We use a mathematical model to compare the effectiveness of ITNs and IRS with dichlorodiphenyltrichloroethane (DDT) or bendiocarb, applied singly and in combination, in an epidemiological setting based in Namawala, Tanzania, with Anopheles gambiae as the primary vector. Our model indicates that although both IRS (with DDT) and ITNs provide personal protection, humans with only ITNs are better protected than those with only IRS, and suggests that high coverage of IRS with bendiocarb may interrupt transmission, as can simultaneous high coverage of ITNs and IRS with DDT. When adding a second vector-control intervention, it is more effective to cover the unprotected population first. Although our model includes some assumptions and approximations that remain to be addressed, these findings should be useful for prioritizing and designing future field research.

Author Notes

*Address correspondence to Nakul Chitnis, Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, Postfach, CH-4002 Basel, Switzerland. E-mail: Nakul.Chitnis@unibas.ch

Authors' addresses: Nakul Chitnis, Allan Schapira, and Thomas Smith, Department of Public Health and Epidemiology, Swiss Tropical Institute, Socinstrasse 57, Postfach, CH-4002 Basel Switzerland, E-mails: Nakul.Chitnis@unibas.ch, a.schapira@bluewin.ch, and Thomas-A.Smith@unibas.ch. Richard Steketee, Malaria Control and Evaluation Partnership in Africa (MACEPA), PATH Batiment Avant Centre, 13 Chemin du Levant, 01210 Ferney-Voltaire, France, E-mail: rsteketee@path.org.

  • 1.

    Chitnis N, Smith T, Steketee R, 2008. A mathematical model for the dynamics of malaria in mosquitoes feeding on a heterogeneous host population. J Biol Dyn 2: 259–285.

    • Search Google Scholar
    • Export Citation
  • 2.

    Smith T, Maire N, Ross A, Penny M, Chitnis N, Schapira A, Studer A, Genton B, Lengeler C, Tediosi F, de Savigny D, Tanner M, 2008. Towards a comprehensive simulation model of malaria epidemiology and control. Parasitology 135: 1507–1516.

    • Search Google Scholar
    • Export Citation
  • 3.

    Saul AJ, Graves PM, Kay BH, 1990. A cyclical feeding model for pathogen transmission and its application to determine vector capacity from vector infection rates. J Appl Ecol 27: 123–133.

    • Search Google Scholar
    • Export Citation
  • 4.

    Saul A, 2003. Zooprophylaxis or zoopotentiation: the outcome of introducing animals on vector transmission is highly dependent on the mosquito mortality while searching. Malar J 32.

    • Search Google Scholar
    • Export Citation
  • 5.

    Le Menach A, Takala S, McKenzie FE, Perisse A, Harris A, Flahault A, Smith DL, 2007. An elaborated feeding cycle model for reductions in vectorial capacity of night-biting mosquitoes by insecticide-treated nets. Malar J 6.

    • Search Google Scholar
    • Export Citation
  • 6.

    Killeen GF, Smith TA, 2007. Exploring the contributions of bed nets, cattle, insecticides and excitorepellency in malaria control: a deterministic model of mosquito host-seeking behaviour and mortality. Trans R Soc Trop Med Hyg 101: 867–880.

    • Search Google Scholar
    • Export Citation
  • 7.

    Killeen GF, Ross A, Smith T, 2006. Infectiousness of malaria-endemic human populations to vectors. Am J Trop Med Hyg 75 (Suppl 2): 38–45.

  • 8.

    van den Berg H, Takken W, 2009. Evaluation of integrated vector management. Trends Parasitol 25: 71–76.

  • 9.

    Service MW, 1993. Mosquito Ecology. Field Sampling Methods, 2nd ed. London, United Kingdom: Elsevier.

  • 10.

    Garrett-Jones C, Grab B, 1964. The assessment of insecticidal impact on the malaria mosquito's vectorial capacity, from data on the population of parous females. Bull World Health Organ 31: 71–86.

    • Search Google Scholar
    • Export Citation
  • 11.

    Smith T, Killeen GF, Maire N, Ross A, Molineaux L, Tediosi F, Hutton G, Utzinger J, Dietz K, Tanner M, 2006. Mathematical modeling of the impact of malaria vaccines on the clinical epidemiology and natural history of Plasmodium falciparum malaria: overview. Am J Trop Med Hyg 75 (Suppl 2): 1–10.

    • Search Google Scholar
    • Export Citation
  • 12.

    Smith A, Webley DJ, 1968. A verandah-trap hut for studying the house-frequenting habits of mosquitoes and for assessing insecticides. III. The effect of DDT on behaviour and mortality. Bull Entomol Res 59: 33–46.

    • Search Google Scholar
    • Export Citation
  • 13.

    Sharp BL, Ridl FC, Govender D, Kuklinski J, Kleinschmidt I, 2007. Malaria vector control by indoor residual insecticide spraying on the tropical island of Bioko, Equatorial Guinea. Malar J 6.

    • Search Google Scholar
    • Export Citation
  • 14.

    Bhattarai A, Ali AS, Kachur SP, Martensson A, Abbas AK, Khatib R, Al-Mafazy AW, Ramsan M, Rotllant G, Gerstenmaier JF, Fabrizio M, Abdulla S, Montgomery SM, Kaneko A, Bjƶrkman A, 2007. Impact of artemisinin-based combination therapy and insecticide-treated nets on malaria burden in Zanzibar. PLoS Med 4: e309.

    • Search Google Scholar
    • Export Citation
  • 15.

    Gimnig JE, Ombok M, Otieno S, Kaufman MG, Vulule JM, Walker ED, 2002. Density-dependent development of Anopheles gambiae (Diptera: Culicidae) larvae in artificial habitats. J Med Entomol 39: 162–172.

    • Search Google Scholar
    • Export Citation
  • 16.

    Govella NJ, Chaki PP, Geissbuhler Y, Kannady K, Okumu F, Charlwood JD, Anderson RA, Killeen GF, 2009. A new tent trap for sampling exophagic and endophagic members of the Anopheles gambiae complex. Malar J 8.

    • Search Google Scholar
    • Export Citation
  • 17.

    D'Alessandro U, Olaleye BO, McGuire W, Langerock P, Bennett S, Aikins MK, Thomson MC, Cham MK, Cham BA, Greenwood BM, 1995. Mortality and morbidity from malaria in Gambian children after introduction of an impregnated bednet programme. Lancet 345: 479–483.

    • Search Google Scholar
    • Export Citation
  • 18.

    Nevill CG, Some ES, Mung'Ala VO, Mutemi W, New L, Marsh K, Lengeler C, Snow RW, 1996. Insecticide-treated bednets reduce mortality and severe morbidity from malaria among children on the Kenyan coast. Trop Med Int Health 1: 139–146.

    • Search Google Scholar
    • Export Citation
  • 19.

    Binka FN, Kubaje A, Adjuik M, Williams LA, Lengeler C, Maude GH, Armah GE, Kajihara B, Adiamah JH, Smith PG, 1996. Impact of permethrin impregnated bednets on child mortality in Kassena-Nankana district, Ghana: a randomized controlled trial. Trop Med Int Health 1: 147–154.

    • Search Google Scholar
    • Export Citation
  • 20.

    Habluetzel A, Diallo DA, Esposito F, Lamizana L, Pagnoni F, Lengeler C, Traore C, Cousens SN, 1997. Do insecticide-treated curtains reduce all-cause child mortality in Burkina Faso? Trop Med Int Health 2: 855–862.

    • Search Google Scholar
    • Export Citation
  • 21.

    Takken W, 2002. Do insecticide-treated bednets have an effect on malaria vectors? Trop Med Int Health 7: 1022–1030.

  • 22.

    Hawley WA, ter Kuike FO, Steketee RS, Nahlen BL, Terlouw DJ, Gimnig JE, Shi YP, Vulule JM, Alaii JA, High-tower AW, Kolczak MS, Kariuki SK, Phillips-Howard PA, 2003. Implications of the western Kenya permethrin-treated bed net study for policy, program implementation, and future research. Am J Trop Med Hyg 68 (Suppl 4): 168–173.

    • Search Google Scholar
    • Export Citation
  • 23.

    Pluess B, Tanser FC, Lengeler C, Sharp BL, 2010. Indoor residual spraying for preventing malaria. Cochrane Database of Systematic Reviews 4: CD006657. doi:10.1002/14651858.CD006657.pub2.

    • Search Google Scholar
    • Export Citation
  • 24.

    Guyatt HL, Corlett SK, Robinson TP, Ochola SA, Snow RW, 2002. Malaria prevention in highland Kenya: indoor residual house-spraying vs. insecticide-treated bednets. Trop Med Int Health 7: 298–303.

    • Search Google Scholar
    • Export Citation
  • 25.

    World Health Organization, 2008. World Malaria Report 2008. Available at: http://malaria.who.int/wmr2008/malaria2008.pdf. Accessed May 2010.

    • Search Google Scholar
    • Export Citation
  • 26.

    Kleinschmidt I, Schwabe C, Benavente L, Torrez M, Ridl FC, Segura JL, Ehmer P, Nchama GN, 2009. Marked increase in child survival after four years of intensive malaria control. Am J Trop Med Hyg 80: 882–888.

    • Search Google Scholar
    • Export Citation
  • 27.

    Killeen GF, Kihonda J, Lyimo E, Oketch FR, Kotas ME, Mathenge E, Schellenberg JA, Lengeler C, Smith TA, Drakeley CJ, 2006. Quantifying behavioural interactions between humans and mosquitoes: evaluating the protective efficacy of insecticidal nets against malaria transmission in rural Tanzania. BMC Infect Dis 6.

    • Search Google Scholar
    • Export Citation
  • 28.

    Evans RG, 1993. Laboratory evaluation of the irritancy of bendiocarb, lambda-cyhalothrin and DDT to Anopheles gambiae. J Am Mosq Control Assoc 9: 285–293.

    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 65 65 12
Full Text Views 809 266 2
PDF Downloads 417 97 1
 
Membership Banner
 
 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save