Thermal Contribution to the Inactivation of Cryptosporidium in Plastic Bottles during Solar Water Disinfection Procedures

Hipólito Gómez-Couso Laboratorio de Parasitología, Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Santiago de Compostela, Santiago de Compostela, A Coruña, Spain

Search for other papers by Hipólito Gómez-Couso in
Current site
Google Scholar
PubMed
Close
,
María Fontán-Sainz Laboratorio de Parasitología, Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Santiago de Compostela, Santiago de Compostela, A Coruña, Spain

Search for other papers by María Fontán-Sainz in
Current site
Google Scholar
PubMed
Close
, and
Elvira Ares-Mazás Laboratorio de Parasitología, Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Santiago de Compostela, Santiago de Compostela, A Coruña, Spain

Search for other papers by Elvira Ares-Mazás in
Current site
Google Scholar
PubMed
Close
Restricted access

To determine the thermal contribution, independent of ultraviolet radiation, on the inactivation of Cryptosporidium parvum during solar water disinfection procedures (SODIS), oocysts were exposed for 4, 8, and 12 hours to temperatures recorded in polyethylene terephthalate bottles in previous SODIS studies carried out under field conditions. Inclusion/exclusion of the fluorogenic vital dye propidium iodide, spontaneous excystation, and infectivity studies were used to determine the inactivation of oocysts. There was a significant increase in the percentage of oocysts that took up propidium iodide and in the number of oocysts that excysted spontaneously. There was also a significant decrease in the intensity of infection elicited in suckling mice at the end of all exposure times. The results of the study demonstrate the importance of temperature in the inactivation of C. parvum oocysts during application of SODIS under natural conditions.

Author Notes

*Address correspondence to Elvira Ares-Mazás, Laboratorio de Parasitología, Facultad de Farmacia, Campus Universitario Sur, 15782 Santiago de Compostela, A Coruña, Spain. E-mail: melvira.ares@usc.es

Financial support: This study was supported by the European Union (grant no. FP6-INCO-CT-2006-031650-SODISWATER).

Authors' address: Hipólito Gómez-Couso, María Fontán-Sainz, and Elvira Ares-Mazás, Laboratorio de Parasitología, Facultad de Farmacia, Campus Universitario Sur, 15782 Santiago de Compostela, A Coruña, Spain.

Reprint requests: Elvira Ares-Mazás, Laboratorio de Parasitología, Facultad de Farmacia, Campus Universitario Sur, 15782 Santiago de Compostela, A Coruña, Spain, E-mail: melvira.ares@usc.es.

  • 1.

    Fayer R, 2004. Cryptosporidium: a water-borne zoonotic parasite. Vet Parasitol 126: 3756.

  • 2.

    Xiao L, Ryan UM, 2004. Cryptosporidiosis: an update in molecular epidemiology. Curr Opin Infect Dis 17: 483490.

  • 3.

    Clancy JL, Hargy TM, 2007. Waterborne: drinking water. Fayer R, Xiao L, eds. Cryptosporidium and Cryptosporidiosis. Second edition. Boca Raton, FL: CRC Press, 305333.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    WHO/UNICEF, 2005. Water for Life: Making It Happen. Available at: http://www.who.int/water_sanitation_health/monitoring/jmp2005/en/index.html. Accessed May 4, 2009

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    WHO/UNICEF, 2007. The State of the World's Children: 2008. Available at: http://www.unicef.org/sowc08/report/report.php. Accessed May 4, 2009

  • 6.

    EAWAG, 2008. Solar Water Disinfection: The Method. Available at: http://www.sodis.ch/Text2002/T-TheMethod.htm. Accessed May 4, 2009

  • 7.

    Wegelin M, Canonica S, Mechsner K, Fleischmann T, Pesaro F, Metzler A, 1994. Solar water disinfection: scope of the process and analysis of radiation experiments. J Water SRT-Aqua 43: 154169.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    McGuigan KG, Joyce TM, Conroy RM, Gillespie JB, Elmore-Meegan M, 1998. Solar disinfection of drinking water contained in transparent plastic bottles: characterizing the bacterial inactivation process. J Appl Microbiol 84: 11381148.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Joyce TM, McGuigan KG, Elmore-Meegan M, Conroy RM, 1996. Inactivation of fecal bacteria in drinking water by solar heating. Appl Environ Microbiol 62: 399402.

  • 10.

    Smith RJ, Kehoe SC, McGuigan KG, Barer MR, 2000. Effects of simulated solar disinfection of water on infectivity of Salmonella typhimurium. Lett Appl Microbiol 31: 284288.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Conroy RM, Elmore-Meegan M, Joyce T, McGuigan KG, Barnes J, 2001. Solar disinfection of drinking water protects against cholera in children under 6 years of age. Arch Dis Child 85: 293295.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Kehoe SC, Barer MR, Devlin LO, McGuigan KG, 2004. Batch process solar disinfection is an efficient means of disinfecting drinking water contaminated with Shigella dysenteriae type I. Lett Appl Microbiol 38: 410414.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Lonnen J, Kilvington S, Kehoe SC, Al-Touati F, McGuigan KG, 2005. Solar and photocatalytic disinfection of protozoan, fungal, and bacterial microbes in drinking water. Water Res 39: 877883.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Heaselgrave W, Patel N, Kilvington S, Kehoe SC, McGuigan KG, 2006. Solar disinfection of poliovirus and Acanthamoeba polyphaga cysts in water: a laboratory study using simulated sunlight. Lett Appl Microbiol 43: 125130.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    McGuigan KG, Méndez-Hermida F, Castro-Hermida JA, Ares-Mazás E, Kehoe SC, Boyle M, Sichel C, Fernández-Ibáñez P, Meyer BP, Ramalingham S, Meyer EA, 2006. Batch solar disinfection inactivates oocysts of Cryptosporidium parvum and cysts of Giardia muris in drinking water. J Appl Microbiol 101: 453463.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Boyle M, Sichel C, Fernández-Ibáñez P, Arias-Quiroz GB, Iriarte-Puña M, Mercado A, Ubomba-Jaswa E, McGuigan KG, 2008. Bacterial effect of solar water disinfection under real sunlight conditions. Appl Environ Microbiol 74: 29973001.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Méndez-Hermida F, Castro-Hermida JA, Ares-Mazás E, Kehoe SC, McGuigan KG, 2005. Effect of batch-process solar disinfection on survival of Cryptosporidium parvum oocysts in drinking water. Appl Environ Microbiol 71: 16531654.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Méndez-Hermida F, Ares-Mazás E, McGuigan KG, Boyle M, Sichel C, Fernández-Ibáñez P, 2007. Disinfection of drinking water contaminated with Cryptosporidium parvum oocysts under natural sunlight and using the photocatalyst TiO2. J Photochem Photobiol B 88: 105111.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    King BJ, Hoefel D, Daminato DP, Fanok S, Monis PT, 2008. Solar UV reduces Cryptosporidium parvum oocyst infectivity in environmental waters. J Appl Microbiol 104: 13111323.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Gómez-Couso H, Fontán-Saínz M, Sichel C, Fernández-Ibáñez P, Ares-Mazás E, 2009. Efficacy of SODIS method in turbid waters experimentally contaminated with Cryptosporidium parvum oocysts under real field conditions. Trop Med Int Health 14: 620627.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Kilani RT, Sekla L, 1987. Purification of Cryptosporidium oocysts and sporozoites by cesium chloride and Percoll gradients. Am J Trop Med Hyg 36: 505508.

  • 22.

    Lorenzo-Lorenzo MJ, Ares-Mazás ME, Villacorta-Martínez de Maturana I, Durán-Oreiro D, 1993. Effect of ultraviolet disinfection of drinking water on the viability of Cryptosporidium parvum oocysts. J Parasitol 79: 6770.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Amar CF, Dear PH, McLauchlin J, 2004. Detection and identification by real time PCR/RFLP analyses of Cryptosporidium species from human faeces. Lett Appl Microbiol 38: 217222.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Robertson LJ, Campbell AT, Smith HV, 1993. In vitro excystation of Cryptosporidium parvum. Parasitol 106: 1319.

  • 25.

    Campbell AT, Robertson LJ, Smith HV, 1992. Viability of Cryptosporidium parvum oocysts: correlation of in vitro excystation with inclusion or exclusion of fluorogenic vital dyes. Appl Environ Microbiol 58: 34883493.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Dowd SE, Pillai SD, 1997. A rapid viability assay for Cryptosporidium oocysts and Giardia cysts for use in conjunction with indirect fluorescent antibody detection. Can J Microbiol 43: 658662.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Peeters JE, Mazás EA, Masschelein WJ, Villacorta Martínez de Maturana I, Debacker E, 1989. Effect of disinfection of drinking water with ozone or chlorine dioxide on survival of Cryptosporidium parvum oocysts. Appl Environ Microbiol 55: 15191522.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Peng X, Murphy T, Holden NM, 2008. Evaluation of the effect of temperature on the die-off rate for Cryptosporidium parvum oocysts in water, soils, and feces. Appl Environ Microbiol 74: 71017107.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Fayer R, 1994. Effect of high temperature on infectivity of Cryptosporidium parvum oocysts in water. Appl Environ Microbiol 60: 27322735.

  • 30.

    King BJ, Keegan AR, Monis PT, Saint CP, 2005. Environmental temperature controls Cryptosporidium oocyst metabolic rate and associated retention of infectivity. Appl Environ Microbiol 71: 38483857.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Smith HV, Nichols RA, Grimason AM, 2005. Cryptosporidium excystation and invasion: getting to the guts of the matter. Trends Parasitol 21: 133142.

  • 32.

    Gómez-Couso H, Fontán-Sainz M, Fernández-Alonso J, Ares-Mazás E, 2009. Excystation of Cryptosporidium parvum at temperatures that are reached during solar water disinfection. Parasitol 136: 393399.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Widmer G, Klein P, Bonilla R, 2007. Adaptation of Cryptosporidium oocysts to different excystation conditions. Parasitol 134: 15831588.

  • 34.

    Robertson LJ, Gjerde BK, 2007. Cryptosporidium oocysts: challenging adversaries? Trends Parasitol 23: 344347.

  • 35.

    Vetterling JM, Doran DJ, 1969. Storagen polysaccharide in coccidial sporozites after excystation and penetration of cells. J Protozool 16: 772775.

  • 36.

    Fayer R, Trout JM, Jenkins MC, 1998. Infectivity of Cryptosporidium parvum oocysts stored in water at environmental temperatures. J Parasitol 84: 11651169.

Past two years Past Year Past 30 Days
Abstract Views 930 853 788
Full Text Views 256 8 4
PDF Downloads 99 10 4
 

 

 

 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save