Elevated Levels of Vascular Endothelial Growth Factor (VEGF) and Soluble Vascular Endothelial Growth Factor Receptor (VEGFR)-2 in Human Malaria

Takahisa Furuta Division of Infectious Genetics, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan; Shin-Yamanote Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan; Department of Tropical Medicine, Jikei University School of Medicine, Tokyo, Japan

Search for other papers by Takahisa Furuta in
Current site
Google Scholar
PubMed
Close
,
Mikio Kimura Division of Infectious Genetics, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan; Shin-Yamanote Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan; Department of Tropical Medicine, Jikei University School of Medicine, Tokyo, Japan

Search for other papers by Mikio Kimura in
Current site
Google Scholar
PubMed
Close
, and
Naohiro Watanabe Division of Infectious Genetics, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan; Shin-Yamanote Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan; Department of Tropical Medicine, Jikei University School of Medicine, Tokyo, Japan

Search for other papers by Naohiro Watanabe in
Current site
Google Scholar
PubMed
Close
Restricted access

In cerebral malaria, the binding of parasitized erythrocytes to the cerebral endothelium and the consequent angiogenic dysregulation play a key role in pathogenesis. Because vascular endothelial growth factor (VEGF) is widely regarded as a potent stimulator of angiogenesis, edema, inflammation, and vascular remodeling, the plasma levels of VEGF and the soluble form of the VEGF receptor (sVEGFR)-1 and -2 in uncomplicated malaria patients and healthy adults were measured by enzyme-linked immunosorbent assay (ELISA) to examine their roles in malaria. The results showed that VEGF and sVEGFR-2 levels were significantly elevated in malaria patients compared with healthy adults. Moreover, it was confirmed that malarial parasite antigens induced VEGF secretion from the human mast cell lines HMC-1 or KU812 cell. This is the first report to suggest that the interaction of VEGF and sVEGFR-2 is involved in the host immune response to malarial infection and that malarial parasites induce VEGF secretion from human mast cells.

Author Notes

*Address correspondence to Takahisa Furuta, Division of Infectious Genetics, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-Ku, Tokyo 108-8639, Japan. E-mail: Furuta@ims.u-tokyo.ac.jp

Authors' addresses: Takahisa Furuta, Division of Infectious Genetics, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan, E-mail: Furuta@ims.u-tokyo.ac.jp. Mikio Kimura, Shin-Yamanote Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan, E-mail: kimumiki@abox3.so-net.ne.jp. Naohiro Watanabe, Department of Tropical Medicine, Jikei University School of Medicine, Tokyo, Japan, E-mail: naohiro@jikei.ac.jp.

Reprint requests: Takahisa Furuta, Division of Infectious Genetics, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-Ku, Tokyo 108-8639, Japan, Tel: 81-3-5449-5378, Fax: 81-3-5449-5410, E-mail: Furuta@ims.u-tokyo.ac.jp.

  • 1.

    Moorthy VS, Good MF, Hill AV, 2004 Malaria vaccine developments. Lancet 363: 150156.

  • 2.

    Deininger MH, Winkler S, Kremsner PG, Meyermann R, Schluesener HJ, 2003 Angiogenic proteins in brains of patients who died with cerebral malaria. J Neuroimmunol 142: 101111.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey AS, Dvorak HK, 1983 Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219: 983985.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N, 1989 Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246: 13061309.

  • 5.

    Ferrara N, Houck K, Jakeman L, Leung DW, 1992 Molecular and biological properties of the vascular endothelial growth factor family of proteins. Endocr Rev 13: 1832.

  • 6.

    Kim I, Moon SO, Kim SH, Kim HJ, Koh YS, Koh GY, 2001 Vascular endothelial growth factor expression of intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and E-selectin through nuclear factor-kappa B activation in endothelial cells. J Biol Chem 276: 76147620.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Reinders ME, Sho M, Izawa A, Wang P, Mukhopadhyay D, Koss KE, Geehan CS, Luster AD, Sayegh MH, Briscoe DM, 2003 Proinflammatory functions of vascular endothelial growth factor in alloimmunity. J Clin Invest 112: 16551665.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Lucerna M, Mechtcheriakova D, Kadl A, Schabbauer G, Schafer R, Gruber F, Koshelnick Y, Muller HD, Issbrucker K, Clauss M, Binder BR, Hofer E, 2003 NAB2, a corepressor of EGR-1, inhibits vascular endothelial growth factor-mediated gene induction and angiogenic responses of endothelial cells. Biol Chem 278: 1143311440.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Kuenen BC, Levi M, Meijers JC, Kakkar AK, van Hinsbergh VW, Kostense PJ, Pinedo HM, Hoekman K, 2002 Analysis of coagulation cascade and endothelial cell activation during inhibition of vascular endothelial growth factor/vascular endothelial growth factor receptor pathway in cancer patients. Arterioscler Thromb Vasc Biol 22: 15001505.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Harada M, Mitsuyama K, Yoshida H, Sakisaka S, Taniguchi E, Kawaguchi T, Ariyoshi M, Saiki T, Sakamoto M, Nagata K, Sata M, Matsuo K, Tanikawa K, 1998 Vascular endothelial growth factor in patients with rheumatoid arthritis. Scand J Rheumatol 27: 377380.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Taha Y, Raab Y, Larsson A, Carlson M, Loof L, Gerdin B, Thorn M, 2004 Vascular endothelial growth factor (VEGF)–a possible mediator of inflammation and mucosal permeability in patients with collagenous colitis. Dig Dis Sci 49: 109115.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Boesiger J, Tsai M, Maurer M, Yamaguchi M, Brown LF, Claffey KP, Dvorak HF, Galli SJ, 1998 Mast cells can secrete vascular permeability factor/vascular endothelial cell growth factor and exhibit enhanced release after immunoglobulin E-dependent upregulation of Fcɛreceptor I expression. J Exp Med 21: 11351145.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Grützkau A, Krüger-Krasagakes S, Baumeister H, Schwarz C, Kögel H, Welker P, Lippert U, Henz BM, Möller A, 1998 Synthesis, storage, and release of vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) by human mast cells: implications for the biological significance of VEGF206. Mol Biol Cell 9: 875884.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Marshall JS, Bienenstock J, 1994 The role of mast cells in inflammatory reactions of the airways, skin, and intestine. Curr Opin Immunol 6: 853859.

  • 15.

    Echtenacher B, Mannel DN, Hultner L, 1996 Critical protective role of mast cells in a model of acute septic peritonitis. Nature 381: 7577.

  • 16.

    Galli SJ, Maurer M, Lantz CS, 1999 Mast cells as sentinels of innate immunity. Curr Opin Immunol 11: 5359.

  • 17.

    Malaviya R, Ikeda T, Ross E, Abraham SN, 1996 Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNF-alpha. Nature 381: 7780.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Furuta T, Imajo-Ohmi S, Fukuda H, Kano S, Miyake K, Watanabe N, 2008 Mast cell-mediated immune responses through IgE antibody and Toll-like receptor 4 by malarial peroxiredoxin. Eur J Immunol 38: 13411350.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Furuta T, Kikuchi T, Iwakura Y, Watanabe N, 2006 Protective roles of mast cells and mast cell-derived TNF in murine malaria. J Immunol 177: 32943302.

  • 20.

    WHO, 1990 Severe and complicated malaria. Trans R Soc Trop Med Hyg 84: 165.

  • 21.

    Kishi K, 1985 A new leukemia cell line with Philadelphia chromosome characterized as basophil precursors. Leuk Res 9: 381390.

  • 22.

    Butterfield JH, Weiler D, Dewald G, Gleich GJ, 1988 Establishment of an immature mast cell line from a patient with mast cell leukemia. Leuk Res 12: 345355.

  • 23.

    Kendall RL, Wang G, Thomas KA, 1996 Identification of a natural soluble form of the vascular endothelial growth factor receptor, FLT-1, and its heterodimerization with KDR. Biochem Biophys Res Commun 226: 324328.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Muehlenbachs A, Mutabingwa TK, Edmonds S, Fried M, Duffy PE, 2006 Hypertension and maternal-fetal conflict during placental malaria. PLoS Med 3: 214230.

  • 25.

    Maynard SE, Min J-Y, Merchan J, Lim K-H, Li J, Mondal S, Towia A, Libermann TA, Morgan JP, Sellke FW, Stillman IE, Epstein FH, Sukhatme VP, Karumanchi SA, 2003 Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest 111: 649658.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Clark DE, Smith SK, He Y, Day KA, Licence DR, Crops AN, Lammoglia R, Charnock-Jones S, 1998 A vascular endothelial growth factor antagonist is produced by the placenta and released into maternal circulation. Biol Reprod 59: 15401548.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Levine RJ, Maynard SE, Qian C, Lim KH, England LJ, Kai F, Yu KF, Schisterman EF, Thadhani R, Sachs BP, Epstein FH, Sibai BM, Vikas P, Sukhatme VP, Karumanchi SA, 2004 Circulating antigenic factors and the risk of preeclampsia. N Engl J Med 350: 672683.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Watenberger J, Claessen-Weish L, Siegbahn A, Shibuya M, Heldin CH, 1994 Different signal transduction properties of KDR and Flt-1, two receptors for vascular endothelial growth factor. J Biol Chem 269: 2698826995.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Jain V, Armah HB, Tongren JE, Ned RM, Wilson NO, Crawford S, Joel PK, Singh MP, Nagpal AC, Dash AP, Udhayakumar V, Singh N, Stiles JK, 2008 Plasma IP-10, apoptotic and angiogenic factors associated with fatal cerebral malaria in India. Malar J 7: 8398.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Marshall JS, 2004 Mast-cell responses to pathogens. Nat Rev Immunol 4: 787799.

  • 31.

    Krishnegowda G, Hajjar AM, Zhu J, Douglass EJ, Uematsu S, Akira S, Amina S, Woods AS, Gowda DC, 2005 Induction of proinflammatory responses in macrophages by the glycosylphosphatidylinositols of Plasmodium falciparum: cell signaling receptors, glycosylphosphatidylinositol (GPI) structural requirement, and regulation of GPI activity. J Biol Chem 280: 86068616.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Coban C, Ishii KJ, Kawai T, Hemmi H, Sato S, Uematsu S, Yamamoto M, Takeuchi O, Itagaki S, Kumar N, Horii T, Akira S, 2005 Toll-like receptor 9 mediates innate immune activation by the malaria pigment hemozoin. J Exp Med 201: 1925.

    • PubMed
    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 342 148 7
Full Text Views 312 12 4
PDF Downloads 99 13 4
 

 

 

 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save