• 1

    Aramburu GJ, Ramal AC, Witzig R, 1999. Malaria reemergence in the Peruvian Amazon region. Emerg Infect Dis 5 :209–215.

  • 2

    Branch OH, Casapia WM, Gamboa DV, Hernandez JN, Alava FF, Roncal N, Alvarez E, Perez EJ, Gotuzzo E, 2005. Clustered local transmission and asymptomatic Plasmodium falciparum and Plasmodium vivax malaria infections in recently emerged, hypoendemic Peruvian Amazon community. Malar J 4 :27.

    • Search Google Scholar
    • Export Citation
  • 3

    Paul REL, Packer MJ, Walmsley M, Lagog M, Ranford-Cartwright LC, Paru R, Day KP, 1995. Mating patterns in malaria parasite populations of Papua New Guinea. Science 269 :1709–1711.

    • Search Google Scholar
    • Export Citation
  • 4

    Robert F, Ntoumi F, Angel G, Candito D, Rogier C, Fandeur T, Sarthou JL, Mercereau-Puijalon O, 1996. Extensive genetic diversity of Plasmodium falciparum isolates collected from patients with severe malaria in Dakar, Senegal. Trans R Soc Trop Med Hyg 90 :704–711.

    • Search Google Scholar
    • Export Citation
  • 5

    Paul RE, Hackford I, Brockman A, Muller-Graf C, Price R, Luxemburger C, White NJ, Nosten F, Day KP, 1998. Transmission intensity and Plasmodium falciparum diversity on the northwestern border of Thailand. Am J Trop Med Hyg 58 :195–203.

    • Search Google Scholar
    • Export Citation
  • 6

    Ariey F, Chalvet W, Hommel D, Peneau C, Hulin A, Mercereau-Puijalon O, Duchemin JB, Sarthou JL, Reynes JM, Fandeur T, 1999. Plasmodium falciparum parasites in French Guiana: limited genetic diversity and high selfing rate. Am J Trop Med Hyg 61 :978–985.

    • Search Google Scholar
    • Export Citation
  • 7

    Konate L, Zwetyenga J, Rogier C, Bischoff E, Fontenille D, Tall A, Spiegel A, Trape JF, Mercereau-Puijalon O, 1999. Variation of Plasmodium falciparum msp1 block 2 and msp2 allele prevalence and of infection complexity in two neighbouring Senegalese villages with different transmission conditions. Trans R Soc Trop Med Hyg 93 (Suppl 1):21–28.

    • Search Google Scholar
    • Export Citation
  • 8

    Branch OH, Takala S, Kariuki S, Nahlen BL, Kolczak M, Hawley W, Lal AA, 2001. Plasmodium falciparum genotypes, low complexity of infection, and resistance to subsequent malaria in participants in the Asembo Bay Cohort Project. Infect Immun 69 :7783–7792.

    • Search Google Scholar
    • Export Citation
  • 9

    Da Silveira LA, Dorta ML, Kimura EAS, Katzin AM, Kawamoto F, Tanabe K, Ferreira MU, 1999. Allelic diversity and antibody recognition of Plasmodium falciparum merozoite surface protein 1 during hypoendemic malaria transmission in the Brazilian Amazon Region. Infect Immun 67 :5906–5916.

    • Search Google Scholar
    • Export Citation
  • 10

    Takala S, Branch O, Escalante AA, Kariuki S, Wootton J, Lal AA, 2002. Evidence for intragenic recombination in Plasmodium falciparum: identification of a novel allele family in Block 2 of merozoite surface protein-1: Asembo Bay Area Cohort Project XIV. Mol Biochem Parasitol 125 :163–171.

    • Search Google Scholar
    • Export Citation
  • 11

    Tetteh KK, Cavanagh DR, Corran P, Musonda R, McBride JS, Conway DJ, 2005. Extensive antigenic polymorphism within the repeat sequence of the Plasmodium falciparum merozoite surface protein 1 block 2 is incorporated in a minimal polyvalent immunogen. Infect Immun 73 :5928–5935.

    • Search Google Scholar
    • Export Citation
  • 12

    Chenet SM, Branch OH, Escalante AA, Lucas CM, Bacon DJ, 2008. Genetic diversity of vaccine candidate antigens in Plasmodium falciparum isolates from the Amazon basin of Peru. Malar J 7 :93.

    • Search Google Scholar
    • Export Citation
  • 13

    Tami A, Grundmann H, Sutherland C, McBride JS, Cavanagh DR, Campos E, Snounou G, Barnabe C, Tibayrenc M, Warhurst DC, 2002. Restricted genetic and antigenic diversity of Plasmodium falciparum under mesoendemic transmission in the Venezuelan Amazon. Parasitology 124 :569–581.

    • Search Google Scholar
    • Export Citation
  • 14

    Galinski MR, Corredor-Medina C, Povoa M, Crosby J, Ingravallo P, Barnwell JW, 1999. Plasmodium vivax merozoite surface protein-3 contains coiled-coil motifs in an alanine-rich central domain. Mol Biochem Parasitol 101 :131–147.

    • Search Google Scholar
    • Export Citation
  • 15

    Cohen C, Parray DA, 1994. Alpha-helical coiled coils: more facts and better predictions. Science 263 :488–489.

  • 16

    Bruce MC, Galinski MR, Barnwell JW, Snounou G, Day KP, 1999. Polymorphism at the merozoite surface protein-3α locus of Plasmodium vivax: global and local diversity. Am J Trop Med Hyg 61 :518–525.

    • Search Google Scholar
    • Export Citation
  • 17

    Rayner JC, Corredor V, Feldman D, Ingravallo P, Iderabdullah F, Galinski MR, Barnwell JW, 2002. Extensive polymorphism in the Plasmodium vivax merozoite surface coat protein MSP-3α is limited to specific domains. Parasitology 125 :393–405.

    • Search Google Scholar
    • Export Citation
  • 18

    Bruce MC, Galinski MR, Barnwell JW, Donnelly CA, Walmsley M, Alpers MP, Walliker D, Day KP, 2000. Genetic diversity and dynamics of Plasmodium falciparum and P. vivax populations in multiply infected children with asymptomatic malaria infections in Papua New Guinea. Parasitology 121 :257–272.

    • Search Google Scholar
    • Export Citation
  • 19

    Cui L, Mascorro CN, Fan Q, Rzomp KA, Khuntirat B, Zhou G, Chen H, Yan G, Sattabongkot J, 2003. Genetic diversity and multiple infections of Plasmodium vivax malaria in Western Thailand. Am J Trop Med Hyg 68 :613–619.

    • Search Google Scholar
    • Export Citation
  • 20

    Zakeri S, Barjesteh H, Djadid ND, 2006. Merozoite surface protein-3α is a reliable marker for population genetic analysis of Plasmodium vivax. Malar J 5 :53.

    • Search Google Scholar
    • Export Citation
  • 21

    Ord R, Olley S, Tami A, Sutherland CJ, 2005. High sequence diversity and evidence of balancing selection in the Pvmsp3alpha gene of Plasmodium vivax in the Venezuelan Amazon. Mol Biochem Parasitol 144 :86–93.

    • Search Google Scholar
    • Export Citation
  • 22

    Imwong M, Nair S, Pukrittayakamee S, Sudimack D, Williams JT, Mayxay M, Newton PN, Kim JR, Nandy A, Osorio L, Carlton JM, White NJ, Day NP, Anderson TJ, 2007. Contrasting genetic structure in Plasmodium vivax populations from Asia and South America. Int J Parasitol 37 :1013–1022.

    • Search Google Scholar
    • Export Citation
  • 23

    Polley SD, Tetteh KK, Cavanagh DR, Pearce RJ, Lloyd JM, Bojang KA, Okenu DM, Greenwood BM, McBride JS, Conway DJ, 2003. Repeat sequences in Block 2 of Plasmodium falciparum merozoite surface protein 1 are targets of antibodies associates with protection from malaria. Infect Immun 71 :1833–1842.

    • Search Google Scholar
    • Export Citation
  • 24

    Cavanagh DR, Dodoo D, Hviid L, Kurtzhals JA, Theander TG, Akanmori BD, Polley S, Conway DJ, Koram K, McBride JS, 2004. Antibodies to the N-terminal block 2 of Plasmodium falciparum merozoite surface protein 1 are associated with protection against clinical malaria. Infect Immun 72 :6492–6502.

    • Search Google Scholar
    • Export Citation
  • 25

    Mascorro CN, Zhao K, Khuntirat B, Sattabongkot J, Yan G, Escalante AA, Cui L, 2005. Molecular evolution and intragenic recombination of the merozoite surface protein MSP-3alpha from the malaria parasite Plasmodium vivax in Thailand. Parasitology 131 :25–35.

    • Search Google Scholar
    • Export Citation
  • 26

    Wellems TE, Walliker D, Smith CL, do Rosario VE, Maloy WL, Howard RJ, Carter R, McCutchan TF, 1987. A histidine-rich protein gene marks a linkage group favored strongly in a genetic cross of Plasmodium falciparum. Cell 49 :633–642.

    • Search Google Scholar
    • Export Citation
  • 27

    Walliker D, Quakyi IA, Wellems TE, McCutchan TF, Szarfman A, London WT, Corcoran LM, Burkot TR, Carter R, 1987. Genetic analysis of the human malaria parasite Plasmodium falciparum. Science 236 :1661–1666.

    • Search Google Scholar
    • Export Citation
  • 28

    McCutchan TF, de la Cruz VF, Good MF, Wellems TE, 1988. Antigenic diversity in Plasmodium falciparum. Prog Allergy 41 :173–192.

  • 29

    Conway DJ, McBride JS, 1991. Population genetics of Plasmodium falciparum within a malaria hyperendemic area. Parasitology 103 :7–16.

  • 30

    Conway DJ, Cavanagh DR, Tanabe K, Roper C, Mikes ZS, Sakihama N, Bojang KA, Oduola AM, Kremsner PG, Arnot DE, Greenwood BM, McBride JS, 2000. A principal target of human immunity to malaria identified by molecular population genetic and immunological analyses. Nat Med 6 :689–692.

    • Search Google Scholar
    • Export Citation
  • 31

    Takala SL, Escalante AA, Branch OH, Kariuki S, Biswas S, Chaiyaroj SC, Lal AA, 2006. Genetic diversity in the Block 2 region of the merozoite surface protein 1 (MSP-1) of Plasmodium falciparum: additional complexity and selection and convergence in fragment size polymorphism. Infect Genet Evol 6 :417–424.

    • Search Google Scholar
    • Export Citation
  • 32

    Rubio JM, Benito A, Roche J, Berzosa PJ, Garcia ML, Mico M, Edu M, Alvar J, 1999. Semi-nested, multiplex polymerase chain reaction for detection of human malaria parasites and evidence of Plasmodium vivax infection in Equatorial Guinea. Am J Trop Med Hyg 60 :183–187.

    • Search Google Scholar
    • Export Citation
  • 33

    Ord RL, Tami A, Sutherland CJ, 2008. AMA1 genes of sympatric Plasmodium vivax and P. falciparum from Venezuela differ significantly in genetic diversity and recombination frequency. PLoS One 3 :e3366.

    • Search Google Scholar
    • Export Citation
  • 34

    Creasey A, Fenton B, Walker A, Thaithong S, Oliveira S, Mutambu S, Walliker D, 1990. Genetic diversity of Plasmodium falciparum shows geographical variation. Am J Trop Med Hyg 42 :403–413.

    • Search Google Scholar
    • Export Citation
  • 35

    Färnert A, Snounou G, Rooth I, Bjorkman A, 1997. Daily dynamics of Plasmodium falciparum subpopulations in asymptomatic children in a holoendemic area. Am J Trop Med Hyg 56 :538–547.

    • Search Google Scholar
    • Export Citation
  • 36

    Färnert A, 2008. Plasmodium falciparum population dynamics: only snapshots in time? Trends Parasitol 24 :340–344.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Plasmodium falciparum and Plasmodium vivax Infections in the Peruvian Amazon: Propagation of Complex, Multiple Allele-Type Infections without Super-Infection

View More View Less
  • 1 Department of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama; Instituto de Medicina Tropical “Alexander von Humboldt,” Universidad Peruana Cayetano Heredia, Lima, Peru; Universidad Nacional de la Amazonia Peruana–Laboratorio de Investigaciones Productos Naturales Anti-parasitarios, Iquitos, Peru; Department of Medical Parasitology, New York University School of Medicine, New York, New York
Restricted access

Outcrossing potential between Plasmodium parasites is defined by the population-level diversity (PLD) and complexity of infection (COI). There have been few studies of PLD and COI in low transmission regions. Since the 1995–1998 Peruvian Amazon epidemic, there has been sustained transmission with < 0.5 P. falciparum and < 1.6 P. vivax infections/person/year. Using weekly active case detection, we described PLD by heterozygosity (He) and COI using P. falciparum Pfmsp1-B2 and P. vivax Pvmsp3α. Not being homologous genes, we limited comparisons to within species. P. falciparum (N = 293) had low (He = 0.581) and P. vivax (N = 186) had high (He = 0.845) PLD. A total of 9.5% P. falciparum infections and 26.3% P. vivax infections had COI > 1. Certain allele types were in more mixed infections than expected by chance. The few appearances of new alleles could be explained by stochastic polymerase chain reaction detection or synchronization/sequestration. The results suggest propagation of mixed infections by multiple inocula, not super-infection, implying decade-long opportunity for outcrossing in these mixed infections.

Save