• 1

    Dye C, 1992. The analysis of parasite transmission by blood-sucking insect. Annu Rev Entomol 37 :1–19.

  • 2

    Lehane M, 2005. The Biology of Bloodsucking in Insects. Second edition. Cambridge: Cambridge University Press.

  • 3

    Charlwood JD, Smith T, Kihonda J, Heiz B, Billingsley PF, Takken W, 1995. Density independent feeding success of malaria vectors (Diptera: Culicidae) in Tanzania. Bull Entomol Res 85 :29–35.

    • Search Google Scholar
    • Export Citation
  • 4

    Edman JD, Spielman A, 1988. Blood feeding by vectors: physiology, ecology, behavior, and vertebrate defense. Monath T, ed. Epidemiology of Arthropod-Borne Viral Diseases. Volume 1, 153–89.

  • 5

    Lyimo IN, Ferguson HM, 2009. Ecological and evolutionary determinants of host species choice in mosquito vectors. Trends Parasitol 25 :189–196.

    • Search Google Scholar
    • Export Citation
  • 6

    Killeen GF, McKenzie FE, Foy BD, Bogh C, Beier JC, 2001. The availability of potential hosts as a determinant of feeding behaviours and malaria transmission by African populations. Trans R Soc Trop Med Hyg 95 :469–476.

    • Search Google Scholar
    • Export Citation
  • 7

    Bøgh C, Pedersen EM, Mukoko DA, Ouma JH, 1998. Permethrin-impregnated bed net effects on resting and feeding behavior of lymphatic filariasis vector mosquitoes in Kenya. Med Vet Entomol 12 :52–59.

    • Search Google Scholar
    • Export Citation
  • 8

    Mwandawiro C, Boots M, Tuna N, Suwonkerd W, Tsuda Y, Takagi M, 2000. Heterogeneity in the host preference of Japanese encephalitis vectors in Chiang Mai, northern Thailand. Trans R Soc Trop Med Hyg 94 :238–242.

    • Search Google Scholar
    • Export Citation
  • 9

    Kilpatrick AM, Kramer LD, Jones MJ, Marra PP, Daszak P, 2006. West Nile Virus epidemics in North America are driven by shifts in mosquito feeding behavior. PLoS Biol 4 :e82.

    • Search Google Scholar
    • Export Citation
  • 10

    Sharp LB, le Sueur LD, 1991. Behavioural variation of Anopheles arabiensis (Diptera: Culicidae) population in Natal, south Africa. Bull Entomol Res 81 :107–110.

    • Search Google Scholar
    • Export Citation
  • 11

    Besansky N, Hill CA, Costantini C, 2004. No accounting for taste: host preference in malaria vectors. Trends Parasitol 20 :250–251.

  • 12

    Coluzzi M, Sabatini A, della Torre A, Di Deco MA, Petrarca V, 2002. A polytene chromosome analysis of the Anopheles gambiae species complex. Science 298 :1415–1418.

    • Search Google Scholar
    • Export Citation
  • 13

    Day JE, 2005. Host-seeking strategies of mosquito disease vectors. J Am Mosq Control Assoc 21 :17–22.

  • 14

    Costantini C, Sagnon N, della Torre A, Diallo M, Brady J, 1998. Odor-mediated host preferences of west African mosquitoes, with particular reference to malaria vectors. Am J Trop Med Hyg 58 :56–63.

    • Search Google Scholar
    • Export Citation
  • 15

    Wanji S, Tanke T, Atanga SN, Ajonina C, Nicholas T, Fontenille D, 2003. Anopheles species of the mount Cameroon region: biting habits, feeding behaviour and entomological inoculation rates. Trop Med Int Health 8 :643–649.

    • Search Google Scholar
    • Export Citation
  • 16

    Cohuet A, Simard F, Wondji CS, Antonio-Nkondjio C, Awono-Ambene P, Fontenille D, 2004. High malaria transmission intensity due to Anopheles funestus (Diptera: Culicidae) in a village of Savannah–forest transition area in Cameroon. J Med Entomol 41 :901–905.

    • Search Google Scholar
    • Export Citation
  • 17

    Mwangangi JM, Mbogo CM, Nzovu JG, Githure JI, Guiyun Y, Beier JC, 2003. Blood-meal analysis for anopheline mosquitoes sampled along the Kenyan coast. J Am Mosq Control Assoc 19 :371–375.

    • Search Google Scholar
    • Export Citation
  • 18

    Lemasson JJ, Fontenille D, Lochouarn L, Dia I, Simard F, Ba K, Diop A, Diatta M, Molez JF, 1997. Comparison of behaviour and vector efficiency of Anopheles gambiae and An. arabiensis (Diptera: Culicidae) in Barkedji, a sahelian area of Senegal. J Med Entomol 34 :396–403.

    • Search Google Scholar
    • Export Citation
  • 19

    Diatta M, Spiegel A, Lochouarn L, Fontenille D, 1998. Similar feeding preferences of Anopheles gambiae and Anopheles arabiensis in Senegal. Trans R Soc Trop Med Hyg 92 :270–272.

    • Search Google Scholar
    • Export Citation
  • 20

    Bøgh C, Clarke SE, Pinder M, Sanyang F, Lindsay SW, 2001. Effect of passive zooprophylaxis on malaria transmission in the Gambia. J Med Entomol 38 :822–828.

    • Search Google Scholar
    • Export Citation
  • 21

    Sousa CA, Pinto J, Almeida APG, Ferreira C, do Rosário VE, Charlwood JD, 2001. Dogs as a favoured host choice of Anopheles gambiae sensu stricto (Diptera: Culicidae) of São Tomé, west Africa. J Med Entomol 38 :122–125.

    • Search Google Scholar
    • Export Citation
  • 22

    Duchemin JB, Tsy JM, Rabarison P, Roux J, Coluzzi M, Costantini C, 2001. Zoophily of Anopheles arabiensis and An. Gambiae in Madagascar demonstrated by odour-baited entry traps. Med Vet Entomol 15 :50–57.

    • Search Google Scholar
    • Export Citation
  • 23

    Caputo B, Nwakanma D, Jawara M, Adiamoh M, Dia I, Konate L, Petrarca V, Conway DJ, della Torre A, 2008. Anopheles gambiae complex along the Gambia river, with particular reference to the molecular forms of An. Gambiae s.s. Malar J 7 :182.

    • Search Google Scholar
    • Export Citation
  • 24

    Lanzaro GC, Touré YT, Carnahan J, Zheng L, Dolo G, Traoré S, Petrarca V, Vernick KD, Taylor CE, 1998. Complexities in the genetic structure of Anopheles gambiae populations in west Africa as revealed by microsatellite DNA. Proc Natl Acad Sci USA 95 :14260–14265.

    • Search Google Scholar
    • Export Citation
  • 25

    Lehman T, Licht M, Elissa N, Maega BTA, Chimumbwa JM, Watsenga CS, Wondji CS, Simard F, Hawley WA, 2003. Population structure of Anopheles gambiae in Africa. J Hered 94 :133–147.

    • Search Google Scholar
    • Export Citation
  • 26

    della Torre A, Tu Z, Petrarca V, 2005. On the distribution and genetic differentiation of Anopheles gambiae s.s.molecular forms. Insect Biochem Mol Biol 35 :755–769.

    • Search Google Scholar
    • Export Citation
  • 27

    Esnault C, Boulesteix M, Duchemin JB, Koffi AA, Chandre F, Dabiré R, Robert V, Simard F, Tripet F, Donnelly MJ, Fontenille D, Biémont C, 2008. High genetic differentiation between the M and S molecular forms of Anopheles gambiae in Africa. PLoS One 3 :1–7.

    • Search Google Scholar
    • Export Citation
  • 28

    Robert V, Petrarca V, Coluzzi M, Boudin C, Carnevale P, 1991 Etude des taux de parturité et d’infection du complexe Anopheles gambiae dans la rizière de la vallée du Kou, Burkina Faso. Robert V, Chippaux JF, Diomandé L, eds. Le Paludisme en Afrique de l’Ouest: Études Entomologiques et Épidémiologiques en Zone Rizicole et en Milieu Urbain, 17–35.

  • 29

    Costantini C, Birkett MA, Gibson G, Ziesman J, Sagnon NF, Mohamed HA, Coluzzi M, Pickett JA, 2001. Electroantennogram and behavioural responses of the malaria vector Anopheles gambiae to human-specific sweat components. MedVet Entomol 15 :259–266.

    • Search Google Scholar
    • Export Citation
  • 30

    Tirados I, Costantini C, Gibson G, Torr S, 2006. Blood-feeding behaviour of the malarial mosquito Anopheles arabiensis: implications for vector control. Med Vet Entomol 20 :425–437.

    • Search Google Scholar
    • Export Citation
  • 31

    Dabire RK, Diabate A, Baldet T, Pare-Toe L, Guiguemde RT, Oudreaogo JB, Skovmand O, 2006. Personal protection of long lasting insecticide-treated nets in areas of Anopheles gambiae s.s. resistance to pyrethroids. Malar J 5 :12.

    • Search Google Scholar
    • Export Citation
  • 32

    Baldet T, Diabaté A, Guiguemde TR, 1999. Etude de la transmission du paludisme en 1999 dans la zone rizicole de la vallée du Kou (Bama), Burkina Faso. Cahiers Santé 13 :55–60.

    • Search Google Scholar
    • Export Citation
  • 33

    Diabaté A, Baldet T, Chandre F, Dabiré KR, Kengne P, Guiguemde TR, Simard F, Guillet P, Hemingway J, Hougard JM, 2003. Kdr mutation, a genetic marker to assess events of introgression between the molecular M and S forms of Anopheles gambiae (Diptera: Culicidae) in the tropical savannah area of west Africa. J Med Entomol 40 :195–198.

    • Search Google Scholar
    • Export Citation
  • 34

    Service WM, 1993. Mosquito Ecology: Field Sampling Methods. Second edition. London, UK: Elsevier Applied Science Publisher Ltd, 1–954.

  • 35

    Gillies MT, De Meillon B, 1968. Anophelinae of Africa South of the Sahara (Ethiopian Zoogeographical Region). Second edition. Johannesburg: South African Institute for Medical Research. Publication of the South African Institute for Medical Research no. 54.

  • 36

    Costantini C, Gibson G, Brady J, Merzagora L, Coluzzi M, 1993. A new odour-baited trap to collect host-seeking mosquitoes. Parassitologia 35 :5–9.

    • Search Google Scholar
    • Export Citation
  • 37

    Detinova TS, 1962. Age-grouping methods in Diptera of medical importance importance with special reference to some vectors of malaria. Monogr Ser WHO 47 :13–191.

    • Search Google Scholar
    • Export Citation
  • 38

    Beier JC, Perkins PV, Wirtz RA, Koros J, Diggs D, Gargan TP, Koech DK, 1988. Bloodmeal identification by direct enzyme-linked immunosorbent assay (ELISA), tested on Anopheles (Diptera: Culicidae) in Kenya. J Med Entomol 25 :9–16.

    • Search Google Scholar
    • Export Citation
  • 39

    Gouagna LC, Mulder B, Noubissi E, Tchuinkam T, Verhave JP, Boudin C, 1998. The early sporogonic cycle of Plasmodium falciparum in laboratory-infected Anopheles gambiae: an estimation of parasite efficacy. Trop Med Int Health 3 :21–28.

    • Search Google Scholar
    • Export Citation
  • 40

    Wirtz RA, Zavala F, Charoenvit Y, Campbell GH, Burkot TR, Schneider I, Esser KM, Beaudoin RL, Andre RG, 1987. Comparative testing of monoclonal antibodies against Plasmodium falciparum sporozoites for ELISA development. Bull World Health Organ 65 :39–45.

    • Search Google Scholar
    • Export Citation
  • 41

    Favia G, Lanfrancott A, Spanos L, Side’n-Kiamos I, Louis C, 2001. Molecular characterization of ribosomal DNA polymorphisms discriminating among chromosomal forms of Anopheles gambiae s.s. Insect Mol Biol 10 :19–23.

    • Search Google Scholar
    • Export Citation
  • 42

    Gillies MT, 1954. The recognition of age-groups within populations of Anopheles gambiae by the pre-gravid rate and the sporozoite rate. Ann Trop Med Parasitol 48 :58–74.

    • Search Google Scholar
    • Export Citation
  • 43

    Bruce-Chwatt LJ, Garreett-Jones C, Weitz B, 1966. Ten year study (1955–1964) of host selection by anopheline mosquitoes. Bull World Health Organ 35 :405–439.

    • Search Google Scholar
    • Export Citation
  • 44

    Robert V, Gazin P, Boudin C, Molez JF, Ouédraogo V, Carnevale P, 1985. La transmission du paludisme en zone de savane arborée et en zone rizicole des environs de Bobo-Dioulasso (Burkina Faso). Ann Soc Belg Med Trop 65 :201–214.

    • Search Google Scholar
    • Export Citation
  • 45

    Muriu SM, Muturi EJ, Shililu JI, Mbogo CM, Mwanganji JM, Jacob BG, Irungu LW, Mukabana RW, Githure JI, Novak RJ, 2008. Host choice and multiple blood feeding behaviour of malaria vectors and other anophelines in Mwea rice scheme, Kenya. Malar J 7 :43.

    • Search Google Scholar
    • Export Citation
  • 46

    Costantini C, Sagnon NF, della Torre A, Coluzzi M, 1999. Mosquito behavioral aspects of vector-human interactions in the Anopheles gambiae complex. Parrassitologia 41 :209–217.

    • Search Google Scholar
    • Export Citation
  • 47

    Lefèvre T, Gouagna LC, Dabiré R, Elguero E, Fontenille D, Costantini C, Thomas F, 2009. Evolutionary lability of odour-mediated host preference by the malaria vector Anopheles gambiae. Trop Med Int Health 14 :1–9.

    • Search Google Scholar
    • Export Citation
  • 48

    Scott TW, Lorenz LH, Edman JD, 1990. Effects of house sparrow age and arbovirus infection on attraction of mosquitoes. J Med Entomol 27 :856–863.

    • Search Google Scholar
    • Export Citation
  • 49

    Muirhead-Thomson RC, 1951. The distribution of anopheline mosquito bites among different age groups: a new factor in malaria epidemiology. BMJ 15 :1114–1117.

    • Search Google Scholar
    • Export Citation
  • 50

    Spencer M, 1967. Anopheline attack on mother child pairs, Fergusson Island. Papua New Guinea Med J 10 :75.

  • 51

    Carnevale P, Frezil JL, Bosseno MF, Le Pont F, Lancien J, 1978. The aggressiveness of Anopheles gambiae A in relation to the age and sex of the human subjects. Bull World Health Organ 56 :147–154.

    • Search Google Scholar
    • Export Citation
  • 52

    Coluzzi M, 1984. Heterogeneities of the malaria vectorial system in tropical Africa and their significance in malaria epidemiology and control. Bull Wld Hlth Org 63 :107–113.

    • Search Google Scholar
    • Export Citation
  • 53

    White GB, Magayuka SA, Boreham PFL, 1972. Comparative studies on sibling species of the Anopheles gambiae Giles complex (Dipt. Culicidae): bionomics and vectorial activity of species A and species B at Segera, Tanzania. Bull Entomol Res 62 :295–317.

    • Search Google Scholar
    • Export Citation
  • 54

    Githeko AK, Service MW, Mbogo CM, 1994. Origin of blood meals in indoor and outdoor resting malaria vectors in western Kenya. Acta Trop 58 :307–316.

    • Search Google Scholar
    • Export Citation
  • 55

    Konate L, Faye O, Gaye O, Sy N, Diop A, Diouf M, Trape JF, Molez JF, 1999. Zoophagie et hôtes alternatifs des vecteurs du paludisme au Sénégal. Parasite 6 :259–267.

    • Search Google Scholar
    • Export Citation
  • 56

    Edman JD, 1989. Are mosquitoes gourmet or gourmand? J Am Mosq Control Assoc 4 :487–497.

  • 57

    Beier J, Odago WO, Onyango FK, Asiago CM, Koech DK, Roberts CR, 1990. Relative abundance and blood feeding behavior of nocturnally active culicine mosquitoes in western Kenya. J Am Mosq Control Assoc 6 :207–212.

    • Search Google Scholar
    • Export Citation
  • 58

    Muturi EJ, Muriu S, Shililu J, Mwangangi JM, Jacob BG, Mbogo C, Githure J, Novak RJ, 2008. Blood-feeding patterns of Culex quinquefasciatus and other culicines and implications for disease transmission in Mwea rice scheme, Kenya. Parasitol Res 102 :1329–1335.

    • Search Google Scholar
    • Export Citation
  • 59

    Mboera LEG, Takken W, 1999. Odour mediated host preference of Culex quinquefasciatus in Tanzania. Entomol Exp Appl 92 :83–88.

  • 60

    Edman JD, Taylor DJ, 1968. Culex nigripalpus: seasonal shift in the bird-mammal feeding ratio in a mosquito vector of human encephalitis. Science 161 :67–68.

    • Search Google Scholar
    • Export Citation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Beyond Nature and Nurture: Phenotypic Plasticity in Blood-Feeding Behavior of Anopheles gambiae s.s. When Humans Are Not Readily Accessible

View More View Less
  • 1 Génétique et Evolution des Maladies Infectieuses, Montpellier, France; Institut de Recherche pour le Développement, Bobo-Dioulasso, Burkina Faso; Institut de Recherche en Sciences de la Santé, Bobo Dioulasso, Burkina Faso; Laboratoire d’Entomologie, Centre Muraz, Bobo-Dioulasso, Burkina Faso; Institut de Recherche pour le Développement, Montpellier, France; Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal (Québec), Canada
Restricted access

To test for the effects of host accessibility on blood-feeding behavior, we assessed degrees of anthropophily of the malaria mosquito Anopheles gambiae at two stages of the behavioral sequence of host foraging, in a rice growing area near Bobo-Dioulasso, Burkina Faso, where humans are not readily accessible because of years of generalized use of (mostly non-impregnated) bed nets. First, patterns of host selection were assessed by the identification of the blood meal origin of indoor-resting samples. Inherent host preferences were then determined by two odor-baited entry traps, set side by side in a choice arrangement, releasing either human or calf odor. The proportion of feeds taken on humans was around 40%, whereas 88% of trapped An. gambiae “chose” the human-baited trap, indicating a zoophilic pattern of host selection despite a stronger trap entry response with human odor. This paradox can be interpreted as the evolution of a plastic strategy of feeding behavior in this field population of An. gambiae because of the greater accessibility of readily available, although less-preferred, hosts.

Author Notes

Reprint requests: Thierry Lefèvre, Biology Department, Emory University, 1510 Clifton Road, Atlanta, GA 30322, E-mail: telefev@emory.edu.
Save