• 1

    Arredondo-Jimenez JI, Brown DN, Rodriguez MH, Villareal C, Loyola EG, Frederickson CE, 1992. Tests for the existence of genetic determination or conditioning in host selection by Anopheles albimanus (Diptera: Culicidae). J Med Entomol 29 :894–897.

    • Search Google Scholar
    • Export Citation
  • 2

    Narang SK, Seawright JA, Suarez MF, 1991. Genetic structure of natural populations of Anopheles albimanus in Colombia. J Am Mosq Control Assoc 7 :437–445.

    • Search Google Scholar
    • Export Citation
  • 3

    De Merida AM, De Mata MP, Molina E, Porter CH, Black IV WC, 1995. Variation in ribosomal DNA intergenic spacers among populations of Anopheles albimanus in South and Central America. Am J Trop Med Hyg 53 :469–477.

    • Search Google Scholar
    • Export Citation
  • 4

    Molina-Cruz A, De Merida AMP, Mills K, Rodriguez F, Schoua C, Yurrita MM, Molina E, Palmieri M, Black IV WC, 2004. Gene flow among Anopheles albimanus populations in Central America, South America, and the Caribbean assessed by microsatellites and mitochondrial DNA. Am J Trop Med Hyg 71 :350–359.

    • Search Google Scholar
    • Export Citation
  • 5

    Narang SK, Seawright JA, 1989. Linkage map of the mosquito (Anopheles albimanus) (2N=6). Genetic Maps. Locus Maps of Complex Genomes, ed. SJ O’Brien, Book 3, 3.269–3.272. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press.

  • 6

    Fischer D, Bachmann K, 1998. Microsatellite enrichment in organisms with large genomes (Allium cepa L.). Biotechniques 24 :796–800.

  • 7

    Rozen S, Skaletsky H, 2000. Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132 :365–386.

  • 8

    Benedict MQ, 1997. Care and maintenance of anopheline mosquito colonies. Molecular Biology of Insect Disease Vectors: A Methods Manual, ed. JM Crampton, CB Beard, C Louis, 1:3–12. Dordrect, Netherlands: Chapman and Hall.

  • 9

    Savage KE, Lowe RE, 1971. A one-piece aluminum cage designed for adult mosquitoes. Mosq News 31 :111–112.

  • 10

    Brogdon WG, McAllister JC, Corwin AM, Cordon-Rosales C, 1999. Independent selection of multiple mechanisms for pyre-throid resistance in Guatemalan Anopheles albimanus (Diptera: Culicidae). J Econ Entomol 92 :298–302.

    • Search Google Scholar
    • Export Citation
  • 11

    Benedict MQ, Seawright JA, Anthony DW, Avery SW, 1979. Ebony, a semidominant lethal mutant in the mosquito Anopheles albimanus. Can J Genet Cytol 21 :193–200.

    • Search Google Scholar
    • Export Citation
  • 12

    Georghiou GP, 1972. Studies on resistance to carbamate and organophosphorous insecticides in Anopheles albimanus. Am J Trop Med Hyg 21 :797–806.

    • Search Google Scholar
    • Export Citation
  • 13

    Georghiou GP, Gidden FE, Cameron JW, 1967. A Stripe character in Anopheles albimanus (Diptera: Culicidae). Ann Entomol Soc Am 60 :323–328.

    • Search Google Scholar
    • Export Citation
  • 14

    Collins FH, Mendez MA, Rasmussen MO, Mehaffey PC, Besansky NJ, Finnerty V, 1987. A ribosomal RNA gene probe differentiates member species of the Anopheles gambiae complex. Am J Trop Med Hyg 37 :37–41.

    • Search Google Scholar
    • Export Citation
  • 15

    Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newberg LA, 1987. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1 :174–181.

    • Search Google Scholar
    • Export Citation
  • 16

    Stam P, 1993. Construction of integrated genetic-linkage maps by means of a new computer package—Joinmap. Plant J 3 :739–744.

  • 17

    Penilla RP, Rodriguez AD, Hemingway J, Torres JL, Arredondo-Jimenez JI, Rodriguez MH, 1998. Resistance management strategies in malaria vector mosquito control. Baseline data for a large-scale field trial against Anopheles albimanus in Mexico. J Med Entomol 12 :217–233.

    • Search Google Scholar
    • Export Citation
  • 18

    Seawright JA, Benedict MQ, Narang S, 1984. Use of deficiencies for mapping four mutant loci on the salivary gland chromosomes of Anopheles albimanus. Mosq News 44 :568–572.

    • Search Google Scholar
    • Export Citation
  • 19

    Zheng L, Benedict MQ, Cornel AJ, Collins FH, Kafatos FC, 1996. An integrated genetic map of the African human malaria vector mosquito, Anopheles gambiae. Genetics 143 :941–952.

    • Search Google Scholar
    • Export Citation
  • 20

    Cornel AJ, Collins FH, 2000. Maintenance of chromosome arm integrity between two Anopheles mosquito subgenera. J Hered 91 :364–370.

  • 21

    Seawright JA, Benedict MQ, Narang S, 1985. Color mutants in Anopheles albimanus (Diptera: Culicidae). Ann Entomol Soc Am 78 :177–181.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Towards a Genetic Map for Anopheles albimanus: Identification of Microsatellite Markers and a Preliminary Linkage Map for Chromosome 2

View More View Less
  • 1 Centro Regional de Investigación en Salud Pública/Instituto Nacional de Salud Pública, Tapachula, Chiapas, México; Liverpool School of Tropical Medicine, Liverpool, United Kingdom; Center for Health Studies, Universidad del Valle de Guatemala; Centers for Disease Control and Prevention, Atlanta, Georgia; Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
Restricted access

Fifty microsatellite loci were identified in the malaria vector Anopheles albimanus. Markers segregating in F2 progeny of crosses between laboratory strains of An. albimanus were used to construct a preliminary genetic map. More than 300 progeny were genotyped, but the resolution of the map was limited by the lack of polymorphisms in the microsatellite alleles. A robust linkage map for chromosome 2 was established, and additional markers were assigned to the third and X chromosomes by linkage to morphological markers of known physical location. Additional non-informative microsatellite sequences are provided including some showing similarity to those of An. gambiae. This study significantly increases the number of genetic markers available for An. albimanus and provides useful tools for population genetics and genetic mapping studies in this important malaria vector.

Save