• 1

    Tanowitz HB, Machado FS, Jelicks LA, Shirani J, de Carvalho AC, Spray DC, Factor SM, Kirchhoff LV, Weiss LM, 2009. Perspectives on Trypanosoma cruzi-induced heart disease (Chagas disease). Prog Cardiovasc Dis 51 :524–539.

    • Search Google Scholar
    • Export Citation
  • 2

    Rossi MA, Ramos SG, Bestetti RB, 2003. Chagas’ heart disease: clinical-pathological correlation. Front Biosci 8 :e94–e109.

  • 3

    Higuchi Mde L, Benvenuti LA, Martins Reis M, Metzger M, 2003. Pathophysiology of the heart in Chagas’ disease: current status and new developments. Cardiovasc Res 60 :96–107.

    • Search Google Scholar
    • Export Citation
  • 4

    Rochitte CE, Nacif MS, de Oliveira Júnior AC, Siqueira-Batista R, Marchiori E, Uellendahl M, de Lourdes Higuchi M, 2007. Cardiac magnetic resonance in Chagas’ disease. Artif Organs 31 :259–267.

    • Search Google Scholar
    • Export Citation
  • 5

    Mukherjee S, Nagajyothi F, Mukhopadhyay A, Machado FS, Belbin TJ, Campos de Carvalho A, Guan F, Albanese C, Jelicks LA, Lisanti MP, Silva JS, Spray DC, Weiss LM, Tanowitz HB, 2008. Alterations in myocardial gene expression associated with experimental Trypanosoma cruzi infection. Genomics 91 :423–432.

    • Search Google Scholar
    • Export Citation
  • 6

    Gomes JA, Bahia-Oliveira LM, Rocha MO, Busek SC, Teixeira MM, Silva JS, Correa-Oliveira R, 2005. Type 1 chemokine receptor expression in Chagas’ disease correlates with morbidity in cardiac patients. Infect Immun 73 :7960–7966.

    • Search Google Scholar
    • Export Citation
  • 7

    Machado FS, Koyama NS, Carregaro V, Ferreira BR, Milanezi CM, Teixeira MM, Rossi MA, Silva JS, 2005. CCR5 plays a critical role in the development of myocarditis and host protection in mice infected with Trypanosoma cruzi. J Infect Dis 191 :627–636.

    • Search Google Scholar
    • Export Citation
  • 8

    Michailowsky V, Celes MR, Marino AP, Silva AA, Vieira LQ, Rossi MA, Gazzinelli RT, Lannes-Vieira J, Silva JS, 2004. Intercellular adhesion molecule 1 deficiency leads to impaired recruitment of T lymphocytes and enhanced host susceptibility to infection with Trypanosoma cruzi. J Immunol 173 :463–470.

    • Search Google Scholar
    • Export Citation
  • 9

    Scherrer-Crosbie M, 2006. Role of echocardiography in studies of murine models of cardiac diseases. Arch Mal Coeur Vaiss 99 :237–241.

  • 10

    De Souza AP, Tang B, Tanowitz HB, Araújo-Jorge TC, Jelicks LA, 2005. Magnetic resonance imaging in experimental Chagas disease: a brief review of the utility of the method for monitoring right ventricular chamber dilatation. Parasitol Res 97 :87–90.

    • Search Google Scholar
    • Export Citation
  • 11

    Chandra M, Shirani J, Shtutin V, Weiss LM, Factor SM, Petkova SB, Rojkind M, Dominguez-Rosales JA, Jelicks LA, Morris SA, Wittner M, Tanowitz HB, 2002. Cardioprotective effects of verapamil on myocardial structure and function in a murine model of chronic Trypanosoma cruzi infection (Brazil strain): an echocardiographic study. Int J Parasitol 32 :207–215.

    • Search Google Scholar
    • Export Citation
  • 12

    Jelicks LA, Chandra M, Shirani J, Shtutin V, Tang B, Christ GJ, Factor SM, Wittner M, Huang H, Weiss LM, Mukherjee S, Bouzahzah B, Petkova SB, Teixeira MM, Douglas SA, Loredo ML, D’Orleans-Juste P, Tanowitz HB, 2002. Cardioprotective effects of phosphoramidon on myocardial structure and function in murine Chagas’ disease. Int J Parasitol 32 :1497–1506.

    • Search Google Scholar
    • Export Citation
  • 13

    Jelicks LA, Shirani J, Wittner M, Chandra M, Weiss LM, Factor SM, Bekirov I, Braunstein VL, Chan J, Huang H, Tanowitz HB, 1999. Application of cardiac gated magnetic resonance imaging in murine Chagas’ disease. Am J Trop Med Hyg 61 :207–214.

    • Search Google Scholar
    • Export Citation
  • 14

    Johannsen B, 2005. The usefulness of radiotracers to make the body biochemically transparent. Amino Acids 29 :307–311.

  • 15

    Phelps ME, 2000. Inaugural article: positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci USA 97 :9226–9233.

    • Search Google Scholar
    • Export Citation
  • 16

    Iida H, Takahashi A, Tamura Y, Ono Y, Lammertsma AA, 1995. Myocardial blood flow: comparison of oxygen-15-water bolus injection, slow infusion and oxygen-15-carbon dioxide slow inhalation. J Nucl Med 36 :78–85.

    • Search Google Scholar
    • Export Citation
  • 17

    Araujo LI, Lammertsma AA, Rhodes CG, McFalls EO, Iida H, Rechavia E, Galassi A, De Silva R, Jones T, Maseri A, 1991. Noninvasive quantification of regional myocardial blood flow in coronary artery disease with oxygen-15-labeled carbon dioxide inhalation and positron emission tomography. Circulation 83 :875–885.

    • Search Google Scholar
    • Export Citation
  • 18

    Camici P, Araujo LI, Spinks T, Lammertsma AA, Kaski JC, Shea MJ, Selwyn AP, Jones T, Maseri A, 1986. Increased uptake of 18F-fluorodeoxyglucose in postischemic myocardium of patients with exercise-induced angina. Circulation 74 :81–88.

    • Search Google Scholar
    • Export Citation
  • 19

    Ratib O, Phelps ME, Huang SC, Henze E, Selin CE, Schelbert HR, 1982. Positron tomography with deoxyglucose for estimating local myocardial glucose metabolism. J Nucl Med 23 :577–586.

    • Search Google Scholar
    • Export Citation
  • 20

    Law MP, Osman S, Pike VW, Davenport RJ, Cunningham VJ, Rimoldi O, Rhodes CG, Giardinà D, Camici PG, 2000. Evaluation of [11C]GB67, a novel radioligand for imaging myocardial alpha 1-adrenoceptors with positron emission tomography. Eur J Nucl Med 27 :7–17.

    • Search Google Scholar
    • Export Citation
  • 21

    Schäfers M, Dutka D, Rhodes CG, Lammertsma AA, Hermansen F, Schober O, Camici PG, 1998. Myocardial presynaptic and postsynaptic autonomic dysfunction in hypertrophic cardiomyopathy. Circ Res 82 :57–62.

    • Search Google Scholar
    • Export Citation
  • 22

    Rajappan K, Livieratos L, Camici PG, Pennell DJ, 2002. Measurement of ventricular volumes and function: a comparison of gated PET and cardiovascular magnetic resonance. J Nucl Med 43 :806–810.

    • Search Google Scholar
    • Export Citation
  • 23

    Boyd HL, Gunn RN, Marinho NV, Karwatowski SP, Bailey DL, Costa DC, Camici PG, 1996. Non-invasive measurement of left ventricular volumes and function by gated positron emission tomography. Eur J Nucl Med 23 :1594–1602.

    • Search Google Scholar
    • Export Citation
  • 24

    Chatziioannou AF, Cherry SR, Shao Y, Silverman RW, Meadors K, Farquhar TH, Pedarsani M, Phelps ME, 1999. Performance evaluation of microPET: a high-resolution lutetium oxyorthosilicate PET scanner for animal imaging. J Nucl Med 40 :1164–1175.

    • Search Google Scholar
    • Export Citation
  • 25

    Cherry SR, Shao Y, Silverman RW, Meadors K, Siegel S, Chatziioannou A, Young JW, Jones W, Moyers JC, Newport D, Boutefnouchet A, Farquhar TH, Andreaco M, Paulus MJ, Binkley DM, Nutt R, Phelps ME, 1997. MicroPET: a high resolution PET scanner for imaging small animals. IEEE Trans Nucl Sci 44 :1161–1166.

    • Search Google Scholar
    • Export Citation
  • 26

    Schiller NB, Shah PM, Crawford M, DeMaria A, Devereux R, Feigenbaum H, Gutgesell H, Reichek N, Sahn D, Schnittger I, 1989. Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee on Standards, Subcommittee on Quantitation of Two-Dimensional Echocardiograms. J Am Soc Echocardiogr 2 :358–367.

    • Search Google Scholar
    • Export Citation
  • 27

    Huang H, Chan J, Wittner M, Jelicks LA, Morris SA, Factor SM, Weiss LM, Braunstein VL, Bacchi CJ, Yarlett N, Chandra M, Shirani J, Tanowitz HB, 1999. Expression of cardiac cytokines and inducible form of nitric oxide synthase (NOS2) in Trypanosoma cruzi-infected mice. J Mol Cell Cardiol 31 :75–88.

    • Search Google Scholar
    • Export Citation
  • 28

    Cherry SR, Gambhir SS, 2001. Use of positron emission tomography in animal research. ILAR J 42 :219–232.

  • 29

    De Souza AP, Tanowitz HB, Chandra M, Shtutin V, Weiss LM, Morris SA, Factor SM, Huang H, Wittner M, Shirani J, Jelicks LA, 2004. Effects of early and late verapamil administration on the development of cardiomyopathy in experimental chronic Trypanosoma cruzi (Brazil strain) infection. Parasitol Res 92 :496–501.

    • Search Google Scholar
    • Export Citation
  • 30

    Goldenberg RC, Jelicks LA, Fortes FS, Weiss LM, Rocha LL, Zhao D, Carvalho AC, Spray DC, Tanowitz HB, 2008. Bone marrow cell therapy ameliorates and reverses chagasic cardiomyopathy in a mouse model. J Infect Dis 197 :544–547.

    • Search Google Scholar
    • Export Citation
  • 31

    Hiller KH, Waller C, Haase A, Jakob PM, 2008. Magnetic resonance of mouse models of cardiac disease. Handb Exp Pharmacol 185 :245–257.

  • 32

    Siri FM, Jelicks LA, Leinwand LA, Gardin JM, 1997. Gated magnetic resonance imaging of normal and hypertrophied murine hearts. Am J Physiol 272 :H2394–H2402.

    • Search Google Scholar
    • Export Citation
  • 33

    Slawson SE, Roman BB, Williams DS, Koretsky AP, 1998. Cardiac MRI of the normal and hypertrophied mouse heart. Magn Reson Med 39 :980–987.

    • Search Google Scholar
    • Export Citation
  • 34

    Chandra M, Tanowitz HB, Petkova SB, Huang H, Weiss LM, Wittner M, Factor SM, Shtutin V, Jelicks LA, Chan J, Shirani J, 2002. Significance of inducible nitric oxide synthase in acute myocarditis caused by Trypanosoma cruzi (Tulahuen strain). Int J Parasitol 32 :897–905.

    • Search Google Scholar
    • Export Citation
  • 35

    Tanowitz HB, Huang H, Jelicks LA, Chandra M, Loredo ML, Weiss LM, Factor SM, Shtutin V, Mukherjee S, Kitsis RN, Christ GJ, Wittner M, Shirani J, Kisanuki YY, Yanagisawa M, 2005. Role of endothelin 1 in the pathogenesis of chronic chagasic heart disease. Infect Immun 73 :2496–2503.

    • Search Google Scholar
    • Export Citation
  • 36

    Rottman JN, Ni G, Brown M, 2007. Echocardiographic evaluation of ventricular function in mice. Echocardiography 24 :83–89.

  • 37

    Scherrer-Crosbie M, 2006. Role of echocardiography in studies of murine models of cardiac diseases. Arch Mal Coeur Vaiss 99 :237–241.

  • 38

    Litwin SE, Katz SE, Morgan JP, Douglas PS, 1994. Serial echocardiographic assessment of left ventricular geometry and function after large myocardial infarction in the rat. Circulation 89 :345–354.

    • Search Google Scholar
    • Export Citation
  • 39

    Tanaka N, Dalton N, Mao L, Rockman HA, Peterson KL, Gottshall KR, Hunter JJ, Chien KR, Ross J Jr, 1996. Transthoracic echocardiography in models of cardiac disease in the mouse. Circulation 94 :1109–1117.

    • Search Google Scholar
    • Export Citation
  • 40

    Coatney RW, 2001. Ultrasound imaging: principles and applications in rodent research. ILAR J 42 :233–247.

  • 41

    Chapon C, Jackson JS, Aboagye EO, Herlihy AH, Jones WA, Bhakoo KK, 2009. An in vivo multimodal imaging study using MRI and PET of stem cell transplantation after myocardial infarction in rats. Mol Imaging Biol 11 :31–38.

    • Search Google Scholar
    • Export Citation
  • 42

    Gyöngyösi M, Blanco J, Marian T, Trón L, Petneházy O, Petrasi Z, Hemetsberger R, Rodriguez J, Font G, Pavo IJ, Kertész I, Balkay L, Pavo N, Posa A, Emri M, Galuska L, Kraitchman DL, Wojta J, Huber K, Glogar D, 2008. Serial noninvasive in vivo positron emission tomographic tracking of percutaneously intramyocardially injected autologous porcine mesenchymal stem cells modified for transgene reporter gene expression. Circ Cardiovas Imaging 1 :94–103.

    • Search Google Scholar
    • Export Citation
  • 43

    Handa N, Magata Y, Mukai T, Nishina T, Konishi J, Komeda M, 2007. Quantitative FDG-uptake by positron emission tomography in progressive hypertrophy of rat hearts in vivo. Ann Nucl Med 21 :569–576.

    • Search Google Scholar
    • Export Citation
  • 44

    Stegger L, Schäfers KP, Flögel U, Livieratos L, Hermann S, Jacoby C, Keul P, Conway EM, Schober O, Schrader J, Levkau B, Schäfers M, 2005. Monitoring left ventricular dilation in mice with PET. J Nucl Med 46 :1516–1521.

    • Search Google Scholar
    • Export Citation
  • 45

    Osman S, Danpure HJ, 1992. The use of 2-[18F]fluoro-2-deoxy-D-glucose as a potential in vitro agent for labelling human granulocytes for clinical studies by positron emission tomography. Int J Rad Appl Instrum B 19 :183–190.

    • Search Google Scholar
    • Export Citation
  • 46

    Kubota R, Yamada S, Kubota K, Ishiwata K, Tamahashi N, Ido T, 1992. Intra-tumoral distribution of fluorine-18-fluorodeoxyglu-cose in vivo: high accumulation in macrophages and granulocytes studied by microautoradiography. J Nucl Med 33 :1972–1980.

    • Search Google Scholar
    • Export Citation
  • 47

    Kubota R, Yamada S, Kubota K, Ishiwata K, Tamahashi N, Ido T, 1992. Auto-radiographic demonstration of 18F-FDG distribution within mouse FM3A tumour tissue in vivo. Kaku Igaku 29 :1215–1221.

    • Search Google Scholar
    • Export Citation
  • 48

    Godino C, Messa C, Gianolli L, Landoni C, Margonato A, Cera M, Stefano C, Cianflone D, Fazio F, Maseri A, 2008. Multifocal, persistent cardiac uptake of [18-f]-fluoro-deoxy-glucose detected by positron emission tomography in patients with acute myocardial infarction. Circ J 72 :1821–1828.

    • Search Google Scholar
    • Export Citation
  • 49

    Truijers M, Kurvers HA, Bredie SJ, Oyen WJ, Blankensteijn JD, 2008. In vivo imaging of abdominal aortic aneurysms: increased FDG uptake suggests inflammation in the aneurysm wall. J Endovasc Ther 15 :462–467.

    • Search Google Scholar
    • Export Citation
  • 50

    Rudd JH, Myers KS, Bansilal S, Machac J, Pinto CA, Tong C, Rafique A, Hargeaves R, Farkouh M, Fuster V, Fayad ZA, 2008. Atherosclerosis inflammation imaging with 18F-FDG PET: carotid, iliac, and femoral uptake reproducibility, quantification methods, and recommendations. J Nucl Med 49 :871–878.

    • Search Google Scholar
    • Export Citation
 
 
 

 

 

 

 

 

 

Micro-Positron Emission Tomography in the Evaluation of Trypanosoma cruzi-Induced Heart Disease: Comparison with Other Modalities

View More View Less
  • 1 Department of Pathology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Department of Medicine and Radiology, M. Donald Blaufox Laboratory for Molecular Imaging, Departments of Pathology and Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York

Noninvasive assessment of cardiac structure and function is essential to understand the natural course of murine infection with Trypanosoma cruzi. Magnetic resonance imaging (MRI) and echocardiography have been used to monitor anatomy and function; positron emission tomography (PET) is ideal for monitoring metabolic events in the myocardium. Mice infected with T. cruzi (Brazil strain) were imaged 15–100 days post infection (dpi). Quantitative 18F-FDG microPET imaging, MRI and echocardiography were performed and compared. Tracer (18F-FDG) uptake was significantly higher in infected mice at all days of infection, from 15 to 100 dpi. Dilatation of the right ventricular chamber was observed by MRI from 30 to 100 dpi in infected mice. Echocardiography revealed significantly reduced ejection fraction by 60 dpi. Combination of these three complementary imaging modalities makes it possible to noninvasively quantify cardiovascular function, morphology, and metabolism from the earliest days of infection through the chronic phase.

Save