Malaria Diagnosis by a Polymerase Chain Reaction–Based Assay Using a Pooling Strategy

Ajay R. Bharti University of California San Diego, La Jolla, California; Veterans Administration San Diego Healthcare System, San Diego, California

Search for other papers by Ajay R. Bharti in
Current site
Google Scholar
PubMed
Close
,
Scott L. Letendre University of California San Diego, La Jolla, California; Veterans Administration San Diego Healthcare System, San Diego, California

Search for other papers by Scott L. Letendre in
Current site
Google Scholar
PubMed
Close
,
Kailash P. Patra University of California San Diego, La Jolla, California; Veterans Administration San Diego Healthcare System, San Diego, California

Search for other papers by Kailash P. Patra in
Current site
Google Scholar
PubMed
Close
,
Joseph M. Vinetz University of California San Diego, La Jolla, California; Veterans Administration San Diego Healthcare System, San Diego, California

Search for other papers by Joseph M. Vinetz in
Current site
Google Scholar
PubMed
Close
, and
Davey M. Smith University of California San Diego, La Jolla, California; Veterans Administration San Diego Healthcare System, San Diego, California

Search for other papers by Davey M. Smith in
Current site
Google Scholar
PubMed
Close
Restricted access

Pooling clinical specimens reduces the number of assays needed when screening for infectious diseases. Polymerase chain reaction (PCR)-based assays are the most sensitive tests to diagnose malaria, but its high cost limits its use. We adapted a pooling platform that could reduce the number of assays needed to detect malaria infection. To evaluate this platform, two sets of 100 serum samples, with 1% and 5% malaria prevalence, were tested. DNA, extracted from pooled samples, was amplified by malaria-specific PCR. Additional validation was performed by determining the level of PCR detection based on 1:10 and 1:100 dilution. The platform correctly detected all malaria samples in the two test matrices. The use of stored serum samples also has important implications for studies investigating malaria prevalence rates retrospectively. Field studies, using serum and whole blood specimens, are needed to validate this technique for the adaptation of these methods for clinical utility.

  • 1

    Makler MT, Palmer CJ, Ager AL, 1998. A review of practical techniques for the diagnosis of malaria. Ann Trop Med Parasitol 92 :419–433.

    • Search Google Scholar
    • Export Citation
  • 2

    Warhurst DC, Williams JE, 1996. ACP broadsheet no 148. July 1996. Laboratory diagnosis of malaria. J Clin Pathol 49 :533–538.

  • 3

    Milne LM, Kyi MS, Chiodini PL, Warhurst DC, 1994. Accuracy of routine laboratory diagnosis of malaria in the United Kingdom. J Clin Pathol 47 :740–742.

    • Search Google Scholar
    • Export Citation
  • 4

    Snounou G, Viriyakosol S, Zhu XP, Jarra W, Pinheiro L, do Rosario VE, Thaithong S, Brown KN, 1993. High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Mol Biochem Parasitol 61 :315–320.

    • Search Google Scholar
    • Export Citation
  • 5

    Hermsen CC, Telgt DS, Linders EH, van de Locht LA, Eling WM, Mensink EJ, Sauerwein RW, 2001. Detection of Plasmodium falciparum malaria parasites in vivo by real-time quantitative PCR. Mol Biochem Parasitol 118 :247–251.

    • Search Google Scholar
    • Export Citation
  • 6

    Coleman RE, Sattabongkot J, Promstaporm S, Maneechai N, Tippayachai B, Kengluecha A, Rachapaew N, Zollner G, Miller RS, Vaughan JA, Thimasarn K, Khuntirat B, 2006. Comparison of PCR and microscopy for the detection of asymptomatic malaria in a Plasmodium falciparum/vivax endemic area in Thailand. Malar J 5 :121.

    • Search Google Scholar
    • Export Citation
  • 7

    Roshanravan B, Kari E, Gilman RH, Cabrera L, Lee E, Metcalfe J, Calderon M, Lescano AG, Montenegro SH, Calampa C, Vinetz JM, 2003. Endemic malaria in the Peruvian Amazon region of Iquitos. Am J Trop Med Hyg 69 :45–52.

    • Search Google Scholar
    • Export Citation
  • 8

    Gal S, Fidler C, Turner S, Lo YM, Roberts DJ, Wainscoat JS, 2001. Detection of Plasmodium falciparum DNA in plasma. Ann N Y Acad Sci 945 :234–238.

    • Search Google Scholar
    • Export Citation
  • 9

    Bharti AR, Patra KP, Chuquiyauri R, Kosek M, Gilman RH, Llanos-Cuentas A, Vinetz JM, 2007. Polymerase chain reaction detection of Plasmodium vivax and Plasmodium falciparum DNA from stored serum samples: implications for retrospective diagnosis of malaria. Am J Trop Med Hyg 77 :444–446.

    • Search Google Scholar
    • Export Citation
  • 10

    Dorfman R, 1943. The detection of defective numbers of large populations. Ann Math Stat 14 :436–440.

  • 11

    Finucan HM, 1964. The blood testing problem. Appl Stat 13 :43–50.

  • 12

    Phatarfod RM, Sudbury A, 1994. The use of a square array scheme in blood testing. Stat Med 13 :2337–2343.

  • 13

    Stramer SL, Glynn SA, Kleinman SH, Strong DM, Caglioti S, Wright DJ, Dodd RY, Busch MP, 2004. Detection of HIV-1 and HCV infections among antibody-negative blood donors by nucleic acid-amplification testing. N Engl J Med 351 :760–768.

    • Search Google Scholar
    • Export Citation
  • 14

    Mine H, Emura H, Miyamoto M, Tomono T, Minegishi K, Murokawa H, Yamanaka R, Yoshikawa A, Nishioka K, 2003. High throughput screening of 16 million serologically negative blood donors for hepatitis B virus, hepatitis C virus and human immunodeficiency virus type-1 by nucleic acid amplification testing with specific and sensitive multiplex reagent in Japan. J Virol Methods 112 :145–151.

    • Search Google Scholar
    • Export Citation
  • 15

    Busch MP, Caglioti S, Robertson EF, McAuley JD, Tobler LH, Kamel H, Linnen JM, Shyamala V, Tomasulo P, Kleinman SH, 2005. Screening the blood supply for West Nile virus RNA by nucleic acid amplification testing. N Engl J Med 353 :460–467.

    • Search Google Scholar
    • Export Citation
  • 16

    Westreich DJ, Hudgens MG, Fiscus SA, Pilcher CD, 2008. Optimizing screening for acute human immunodeficiency virus infection with pooled nucleic acid amplification tests. J Clin Microbiol 46 :1785–1792.

    • Search Google Scholar
    • Export Citation
  • 17

    Bharti AR, Chuquiyauri R, Brouwer KC, Stancil J, Lin J, Llanos-Cuentas A, Vinetz JM, 2006. Experimental infection of the neo-tropical malaria vector Anopheles darlingi by human patient-derived Plasmodium vivax in the Peruvian Amazon. Am J Trop Med Hyg 75 :610–616.

    • Search Google Scholar
    • Export Citation
  • 18

    World Health Organization, Basic Malaria Microscopy, Parts I and II, 1991. Geneva: World Health Organization.

  • 19

    Singh B, Bobogare A, Cox-Singh J, Snounou G, Abdullah MS, Rahman HA, 1999. A genus- and species-specific nested polymerase chain reaction malaria detection assay for epidemiologic studies. Am J Trop Med Hyg 60 :687–692.

    • Search Google Scholar
    • Export Citation
  • 20

    Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI, 2005. The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434 :214–217.

    • Search Google Scholar
    • Export Citation
  • 21

    Jonkman A, Chibwe RA, Khoromana CO, Liabunya UL, Chaponda ME, Kandiero GE, Molyneux ME, Taylor TE, 1995. Cost-saving through microscopy-based versus presumptive diagnosis of malaria in adult outpatients in Malawi. Bull World Health Organ 73 :223–227.

    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 91 91 8
Full Text Views 530 190 1
PDF Downloads 247 100 0
 
Membership Banner
 
 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save