• 1

    Alphey L, Beard CB, Billingsley P, Coetzee M, Crisanti A, Curtis C, Eggleston P, Godfray C, Hemingway J, Jacobs-Lorena M, James AA, Kafatos FC, Mukwaya LG, Paton M, Powell JR, Schneider W, Scott TW, Sina B, Sinden R, Sinkins S, Spielman S, Touré Y, Collins FG, 2002. Malaria control with genetically manipulated insect vectors. Science 298 :119–121.

    • Search Google Scholar
    • Export Citation
  • 2

    Drakeley C, Schellenberg D, Kihonda J, Sousa CA, Arez AP, Lopes D, Lines J, Mshinda H, Lengeler C, Armstrong Schellenberg J, Tanner M, Alonso P, 2003. An estimation of the entomological inoculation rate for Ifakara: a semi-urban area in a region of intense malaria transmission in Tanzania. Trop Med Int Health 8 :767–774.

    • Search Google Scholar
    • Export Citation
  • 3

    Barat LM, 2006. Four malaria success stories: how malaria burden was successfully reduced in Brazil, Eritrea, India, and Vietnam. Am J Trop Med Hyg 72 :12–16.

    • Search Google Scholar
    • Export Citation
  • 4

    Coetzee M, 1989. Comparative morphology and multivariate analysis for the discrimination of four members of the Anopheles gambiae group in southern Africa. Mosquito Systematics 21 :100–116.

    • Search Google Scholar
    • Export Citation
  • 5

    Coluzzi M, 1964. Morphological Divergences in the Anopheles gambiae Giles Complex. Geneva: World Health Organization, WHO/MAL/456.

  • 6

    Collins FH, Finnerty V, Petrarca V, 1988. Ribosomal DNA-probes differentiate five cryptic species in the Anopheles gambiae complex. Parassitologia 30 :231–240.

    • Search Google Scholar
    • Export Citation
  • 7

    Githeko AK, Adungo NI, Karanja DM, Hawley WA, Vulule JM, Seroney IK, Ofulla AV, Atieli FK, Ondijo SO, Genga IO, Odada PK, Situbi PA, Oloo JA, 1996. Some observations on the biting behavior of Anopheles gambiae s.s., Anopheles arabiensis and Anopheles funestus and implications for malaria control. Exp Parasitol 82 :306–315.

    • Search Google Scholar
    • Export Citation
  • 8

    Hay SI, Rogers DJ, Toomer JF, Snow RW, 2000. Annual Plasmodium falciparum entomological inoculation rates (EIR) Across Africa: literature survey, internet access and review. Trans R Soc Trop Med Hyg 94 :113–127.

    • Search Google Scholar
    • Export Citation
  • 9

    White GB, Magayuka SA, Boreham PFL, 1972. Comparative studies on sibling species of the Anopheles gambiae Giles complex (Dipt., Culicidae): bionomics and vectorial activity of species and species B at Segera, Tanzania. Bull Entomol Res 62 :295–317.

    • Search Google Scholar
    • Export Citation
  • 10

    Githeko AK, Service MW, Mbogo CM, Atieli FK, Juna FO, 1994. Origin of blood meals in indoor and outdoor resting malaria vectors in western Kenya. Acta Trop 58 :307–316.

    • Search Google Scholar
    • Export Citation
  • 11

    Killeen GF, McKenzie FE, Foy BD, Bogh C, Beier JC, 2001. The availability of potential hosts as a determinant of feeding behaviours and malaria transmission by African mosquito populations. Trans R Soc Trop Med Hyg 95 :469–476.

    • Search Google Scholar
    • Export Citation
  • 12

    Mnzava AE, Rwegoshora RT, Wilkes TJ, Tanner M, Curtis CF, 1995. Anopheles arabiensis and Anopheles gambiae chromosomal inversion polymorphism, feeding and resting behavior in relation to insecticide house-spraying in Tanzania. Med Vet Entomol 9 :316–324.

    • Search Google Scholar
    • Export Citation
  • 13

    Mathenge EM, Gimnig JE, Kolczak M, Ombok M, Irungu LW, Hawley WA, 2001. Effect of permethrin-impregnated nets on exiting behavior, blood feeding success, and time of feeding of malaria mosquitoes (Diptera; Culicidae) in western Kenya. J. Med. Ent. 38 :531–536.

    • Search Google Scholar
    • Export Citation
  • 14

    Lindblade KA, Gimnig JE, Kamau L, Hawley WA, Odhiambo F, Olang G, Ter Kuile FO, Vulule JM, Slutsker L, 2006. Impact of sustained use of insecticide-treated bednets on malaria vector species distribution and culicine mosquitoes. J Med Entomol 43 :428–432.

    • Search Google Scholar
    • Export Citation
  • 15

    Killeen GF, Smith TA, 2007. Exploring the contributions of bed nets, cattle, insecticides and excitorepellency to malaria control: a deterministic model of mosquito host-seeking behaviour and mortality. Trans R Soc Trop Med Hyg 101 :867–880.

    • Search Google Scholar
    • Export Citation
  • 16

    Saul A, 2003. Zooprophylaxis or zoopotentiation: the outcome of introducing animals on vector transmission is highly dependent on the mosquito mortality while search. Malar J 2 :32.

    • Search Google Scholar
    • Export Citation
  • 17

    White GB, 1974. Anopheles gambiae complex and disease transmission in Africa. Trans R Soc Trop Med Hyg 68 :278–301.

  • 18

    Lindsay SW, Thomas CJ, 2001. Global warming and risk of vivax malaria in Great Britain. Glob Change Hum Health 2 :80–84.

  • 19

    Minakawa N, Seda P, Guiyun Y, 2002. Influence of host and larval habitat distribution on the abundance of African malaria vectors in western Kenya. Am J Trop Med Hyg 67 :32–38.

    • Search Google Scholar
    • Export Citation
  • 20

    Charlwood JD, Edoh D, 1996. Polymerase chain reaction used to describe larval habitat use by Anopheles gambiae complex (Diptera: Culicidae) in the environs of Ifakara, Tanzania. J Med Entomol 33 :202–204.

    • Search Google Scholar
    • Export Citation
  • 21

    Gillies MT, 1964. Selection for host preference in Anopheles gambiae. Nature 203 :852–854.

  • 22

    Gillies MT, Furlong M, 1964. An investigation into the behaviour of Anopheles parensis Gillies at Malindi on the Kenya coast. Bull Entomol Res 55 :1–16.

    • Search Google Scholar
    • Export Citation
  • 23

    Beier JC, 1998. Malaria parasite development in mosquitoes. Annu Rev Entomol 43 :519–543.

  • 24

    Macdonald G, 1957. The Epidemiology and Control of Malaria. London: Oxford University Press.

  • 25

    Smith DL, McKenzie FE, 2004. Statics and dynamics of malaria infection in Anopheles mosquitoes. Malar J 3 :13.

  • 26

    Charlwood JD, 1997. Vectorial capacity, species diversity and population cycles of anopheline mosquitoes (Diptera: Culicidae) from indoor light-trap collections in a house in southeastern Tanzania. African Entomol 5 :93–101.

    • Search Google Scholar
    • Export Citation
  • 27

    Takken W, Charlwood JD, Billingsley PF, Gort G, 1998. Dispersal and survival of Anopheles funestus and A. gambiae s.l. (Diptera: Culicidae) during the rainy season in southeast Tanzania. Bull Entomol Res 88 :1–6.

    • Search Google Scholar
    • Export Citation
  • 28

    Lindsay SW, Armstrong Schellenberg JR, Zeiler HA, Daly RJ, Salum FM, Wilkins HA, 1995. Exposure of Gambian children to Anopheles gambiae malaria vectors in an irrigated rice production area. Med Vet Entomol 9 :50–58.

    • Search Google Scholar
    • Export Citation
  • 29

    Smith T, Charlwood JD, Takken W, Tanner M, Spiegelhalter DJ, 1995. Mapping the densities of malaria vectors within a single village. Acta Trop 59 :1–18.

    • Search Google Scholar
    • Export Citation
  • 30

    Ribeiro JMC, Seulu F, Abose T, Kidane G, Teklehaimonot A, 1996. Temporal and spatial distribution of anopheline mosquitoes in an Ethiopian village: implications for malaria control strategies. Bull World Health Organ 74 :299–305.

    • Search Google Scholar
    • Export Citation
  • 31

    Gillies MT, 1958. A modified technique for the age-grading of populations of Anopheles gambiae. Ann Trop Med Parasitol 52 :261–273.

  • 32

    Lehane MJ, Mail TS, 1985. Determining the age of adult male and female Glossina morsitans morsitans using a new technique. Ecol Entomol 10 :219–224.

    • Search Google Scholar
    • Export Citation
  • 33

    Schlein Y, 1979. Age grouping of anopheline malaria vectors (Diptera: Culicidae) by the cuticular growth lines. J Med Entomol 16 :502–506.

    • Search Google Scholar
    • Export Citation
  • 34

    Caputo B, Dani FR, Horne GL, Petrarca V, Turillazzi S, Coluzzi M, Priestman AA, della Torre A, 2005. Identification and composition of cuticular hydrocarbons of the major Afrotropical malaria vector An. gambiae s.s. (Diptera: Cilicidae): analysis of sexual dimorphism and age-related changes. J Mass Spectrom 40 :1595–1604.

    • Search Google Scholar
    • Export Citation
  • 35

    Perez-Mendoza J, Throne JE, Dowell FE, Baker JE, 2002. Chronological age-grading of three species of stored-product beetles by using near-infrared spectroscopy. J. Econ. Ent. 97 :1159–1167.

    • Search Google Scholar
    • Export Citation
  • 36

    Cook PE, Hugo LE, Iturbe-Ormaetxe I, Williams CR, Chenoweth SF, Ritchie SA, Ryan PA, Kay BH, Blows MW, O’Neill SL, 2006. The use of transcriptional profiles to predict adult mosquito age under field conditions. Proc Natl Acad Sci USA 103 :18060–18065.

    • Search Google Scholar
    • Export Citation
  • 37

    Dowell FE, Throne JE, Wang D, Baker JE, 1999. Identifying stored-grain insects using near-infrared spectroscopy. J Econ Entomol 93 :165–169.

    • Search Google Scholar
    • Export Citation
  • 38

    Aldrich BT, Maghirang EB, Dowell FE, Kambhampati S, 2007. Identification of termite species of the genus Zootermopsis using near-infrared reflectance spectroscopy. J Insect Sci 7 :18.

    • Search Google Scholar
    • Export Citation
  • 39

    Dowell FE, Parker AG, Benedict MQ, Robinson AS, Broce AB, Wirtz RA, 2005. Sex separation of tsetse fly pupae using near-infrared spectroscopy. Bull Entomol Res 95 :249–257.

    • Search Google Scholar
    • Export Citation
  • 40

    Hall MH, Dutro SM, Klowden MJ, 1990. Determination by near-infrared reflectance spectroscopy of mosquito (Diptera: Culicidae) bloodmeal size. J Med Entomol 27 :76–79.

    • Search Google Scholar
    • Export Citation
  • 41

    Gray EM, Bradley TJ, 2005. Physiology of desiccation resistance in Anopheles gambiae and Anopheles arabiensis. Am J Trop Med Hyg 73 :553–559.

    • Search Google Scholar
    • Export Citation
  • 42

    Reeves JM, Peiris S, Scholte E, Wirtz RA, Dowell FE, 2009. Age grading Culicoides sonorensis (Diptera: Ceratopogonidae) using near-infrared spectroscopy. Med Vet Entomol 23 : (in press).

    • Search Google Scholar
    • Export Citation
  • 43

    Scott JA, Brogdon WG, Collins FH, 1993. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg 49 :520–529.

    • Search Google Scholar
    • Export Citation
  • 44

    Williams PC, 2001. Implementation of near-infrared technology. Williams P, Norris K, eds. Near Infrared Technology in the Agricultural and Food Industries. St. Paul, MN: American Association of Cereal Chemists, 145–169.

  • 45

    Martens H, Naes T, 2001. Multivariate calibration by data compression. Williams P, Norris K, eds. Near Infrared Technology in the Agricultural and Food Industries. St. Paul, MN: American Association of Cereal Chemists, 59–100.

  • 46

    Miller CE, 2001. Chemical principles of near-infrared technology. Williams P, Norris K, eds. Near Infrared Technology in the Agricultural and Food Industries. St. Paul, MN: American Association of Cereal Chemists, Inc., 19–37.

  • 47

    Killeen GF, Tami A, Kihonda J, Okumu FO, Kotas ME, Grundmann H, Kasigudi N, Ngonyani H, Mayagaya V, Nathan R, Abdulla S, Charlwood JD, Smith TA, Lengeler C, 2007. Cost-sharing strategies combining targeted public subsidies with private-sector delivery achieve high bednet coverage and reduced malaria transmission in Kilombero Valley, southern Tanzania. BMC Infect Dis 7 :121.

    • Search Google Scholar
    • Export Citation
  • 48

    Shenk JS, Workman JJ Jr, Westerhaus MO, 2001. Application of NIR spectroscopy to agricultural products. Burns DA, Ciurczak E, eds. Handbook of Near-Infrared Analysis. Second edition New York: Marcel Dekker, 419–474.

  • 49

    Carlson DA, Service MW, 1980. Identification of mosquitoes of Anopheles gambiae species complex A and B by analysis of cuticular components. Science 207 :1089–1091.

    • Search Google Scholar
    • Export Citation
  • 50

    Milligan PJM, Phillips A, Broomfield G, Molyneux DH, Toure Y, Coluzzi M, 1993. A study of the use of gas chromatography of cuticular hydrocarbons for identifying members of the Anopheles gambiae (Diptera: Culicidae) complex. Bull Entomol Res 83 :613–624.

    • Search Google Scholar
    • Export Citation
  • 51

    Gillies MT, Wilkes TJ, 1965. A study of age-composition of populations of Anopheles gambiae Giles and a Funestus Giles in North-Eastern Tanzania. Bull Entomol Res 56 :237–262.

    • Search Google Scholar
    • Export Citation
  • 52

    Charlwood JD, Bryan JH, 1987. A mark-recapture experiment with the filariasis vector Anopheles punctulatus in Papua New Guinea. Ann Trop Med Parasitol 81 :429–436.

    • Search Google Scholar
    • Export Citation
  • 53

    Detinova TS, 1962. Age-grouping methods in Diptera of medical importance with special reference to some vectors of malaria. Monogr Ser World Health Organ 47 :13–191.

    • Search Google Scholar
    • Export Citation
  • 54

    Lines JD, Wilkes TJ, Lyimo EO, 1991. Human malaria infectiousness measured by age-specific sporozoite rates in Anopheles gambiae in Tanzania. Parasitol 102 :167–177.

    • Search Google Scholar
    • Export Citation
  • 55

    Killeen GF, McKenzie FE, Foy BD, Schieffelin C, Billingsley PF, Beier JC, 2000. The potential impacts of integrated malaria transmission control on entomologic inoculation rate in highly endemic areas. Am J Trop Med Hyg 62 :545–551.

    • Search Google Scholar
    • Export Citation
  • 56

    Killeen GF, McKenzie FE, Foy BD, Schieffelin C, Billingsley PF, Beier JC, 2000. A simplified model for predicting malaria entomologic inoculation rates based on entomologic and parasitologic parameters relevant to control. Am J Trop Med Hyg 62 :535–544.

    • Search Google Scholar
    • Export Citation
  • 57

    Briet OJ, 2002. A simple method for calculating mosquito mortality rates, correcting for seasonal variations in recruitment. Med Vet Entomol 16 :22–27.

    • Search Google Scholar
    • Export Citation
  • 58

    Hugo LE, Kay BH, Eaglesham GK, Holling N, Ryan PA, 2006. Investigation of cuticular hydrocarbons for determining the age and survivorship of Australasian mosquitoes. Am J Trop Med Hyg 74 :462–474.

    • Search Google Scholar
    • Export Citation
  • 59

    Huho BJ, Ng’habi KR, Killeen GF, Nkwengulila G, Knols BGJ, Ferguson HM, 2006. A reliable morphological method to assess the age of male An. gambiae. Malar J 5 :62.

    • Search Google Scholar
    • Export Citation
  • 60

    Perez-Mendoza J, Dowell FE, Broce AB, Throne JE, Wirtz RA, Xie F, Fabrick JA, Baker JE, 2002. Chronological age-grading of house flies by using near-infrared spectroscopy. J Med Entomol 39 :499–508.

    • Search Google Scholar
    • Export Citation
  • 61

    Huho BJ, Ng’habi KR, Killeen GF, Nkwengulila G, Knols BGJ, Ferguson HM, 2006. Nature beats nurture: a case study of the physiological fitness of free-living and laboratory-reared male Anopheles gambiae s.l. J Exp Biol 210 :2939–2947.

    • Search Google Scholar
    • Export Citation
  • 62

    Greenwood BM, Fidock DA, Kyle DE, Kappe SH, Collins FH, Duffy PE, 2008. Malaria: progress, perils, and prospects for eradication. J Clin Invest 118 :1266–1276.

    • Search Google Scholar
    • Export Citation
  • 63

    Brady J, 1963. Results of age-grouping dissections on 4 species of Anopheles from southern Ghana. Bull World Health Organ 29 :147.

  • 64

    Detinova TS, 1968. Age structure of insect populations of medical importance. Annu Rev Entomol 13 :427–450.

  • 65

    Snow WF, Wilkes TJ, 1977. Age composition and vertical distribution of mosquito populations in Gambia, West-Africa. J Med Entomol 13 :507–513.

    • Search Google Scholar
    • Export Citation
  • 66

    Moffett A, Shackelford N, Sarkar S, 2007. Malaria in Africa: vector species’ niche models and relative risk maps. PLoS One 2: e824, doi: 10.1371/journal.pone.0000824.

  • 67

    Lindsay SW, Parson L, Thomas CJ, 1998. Mapping the ranges and relative abundance of the two principal African malaria vectors, Anopheles gambiae sensu stricto and An. arabiensis, using climate data. Proc R Soc Lond B Biol Sci 265 :847–854.

    • Search Google Scholar
    • Export Citation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Non-destructive Determination of Age and Species of Anopheles gambiae s.l. Using Near-infrared Spectroscopy

View More View Less
  • 1 Ifakara Health Institute, Biomedical Unit, Ifakara and Dar es Salaam Branches, Ifakara and Dar es Salaam, Tanzania; Division of Biology, Kansas State University, Manhattan, Kansas; International Atomic Energy Agency Laboratories/Division of Human Health, Seibersdorf, Austria; Liverpool School of Tropical Medicine, Vector Group, Liverpool, United Kingdom; Centers for Disease Control and Prevention, Atlanta, Georgia; Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, United Kingdom; Engineering and Wind Erosion Research Unit, Grain Marketing and Production Research Center, U.S. Department of Agriculture Agricultural Research Service, Manhattan, Kansas

Determining malaria vector species and age is crucial to measure malaria risk. Although different in ecology and susceptibility to control, the African malaria vectors Anopheles gambiae sensu stricto and An. arabiensis are morphologically similar and can be differentiated only by molecular techniques. Furthermore, few reliable methods exist to estimate the age of these vectors, which is a key predictor of malaria transmission intensity. We evaluated the use of near-infrared spectroscopy (NIRS) to determine vector species and age. This non-destructive technique predicted the species of field-collected mosquitoes with approximately 80% accuracy and predicted the species of laboratory-reared insects with almost 100% accuracy. The relative age of young or old females was predicted with approximately 80% accuracy, and young and old insects were predicted with ≥ 90% accuracy. For applications where rapid assessment of the age structure and species composition of wild vector populations is needed, NIRS offers a valuable alternative to traditional methods.

Author Notes

Reprint requests: Floyd E. Dowell, Engineering and Wind Erosion Research Unit, Grain Marketing and Production Research Center, U.S. Department of Agriculture Agricultural Research Service, 1515 College Avenue, Manhattan, KS 66502, E-mail: floyd.dowell@ars.usda.gov.
Save