• 1

    Choi CM, Lerner EA, 2001. Leishmaniasis as an emerging infection. J Investig Dermatol Symp Proc 6 :175–182.

  • 2

    Desjeux P, 2004. Leishmaniasis: current situation and new perspectives. Comp Immunol Microbiol Infect Dis 27 :305–318.

  • 3

    Cupolillo E, Medina-Costa E, Noyes H, Momen H, Grimaldi G Jr, 2000. Arevised classification for Leishmania and Endotrypanum. Parasitol Today 16 :142–144.

    • Search Google Scholar
    • Export Citation
  • 4

    Lachaud L, Marchergui-Hammami S, Chabbert E, Dereure J, Dedet JP, Bastien P, 2002. Comparison of six PCR methods using peripheral blood for detection of canine visceral leishmaniasis. J Clin Microbiol 40 :210–215.

    • Search Google Scholar
    • Export Citation
  • 5

    World Health Organization, 1990. Control of the leishmaniases. Report of a WHO expert committee. World Health Organ Tech Rep Ser 793 :1–158.

    • Search Google Scholar
    • Export Citation
  • 6

    Rassi Y, Kaverizadeh F, Javadian E, Mohebali M, 2004. First report on natural promastigote infection of Phlebotomus caucasicus in a new focus visceral leishmaniasis in north west Iran. Iran J Public Health 33 :70–72.

    • Search Google Scholar
    • Export Citation
  • 7

    Mohebali M, Hamzavi Y, Edrissian GH, Forouzani A, 2001. Seroepidemiological study of visceral leishmaniasis among humans and animal reservoirs in Bushehr province, Islamic Republic of Iran. Eastern Mediterannean Health J 7 :912–917.

    • Search Google Scholar
    • Export Citation
  • 8

    Rassi Y, Javadian E, Nadim A, 1997. Natural promastigote Infection of sandflies and its first occurrence in S. dentata in Ardebil province, North West of Iran. Iranian J Public Health 6 :7–12.

    • Search Google Scholar
    • Export Citation
  • 9

    Voller A, De Savigny D, 1981. Diagnostic serology of tropical parasitic disease. J Immunol Methods 46 :1–29.

  • 10

    Kreutzer RD, Christensen HA, 1980. Characterization of Leishmania spp. by isoenzyme electrophoresis. Am J Trop Med Hyg 29 :199–208.

  • 11

    Tibayrenc M, Ayala FJ, 1999. Evolutionary genetics of Trypanosoma and Leishmania. Microbes Infect 1 :465–472.

  • 12

    Alvar J, Barker JR, 2002. Molecular tools for epidemiological studies and diagnosis of leishmaniasis and selected other parasitic diseases. Trans R Soc Trop Med Hyg 96 (Suppl. 1):S1–S250.

    • Search Google Scholar
    • Export Citation
  • 13

    Rodriguez N, Aguilar CM, Barrios MA, Barker DC, 1999. Detection of Leishmania braziliensis in naturally infected individual sand flies by the polymerase chain reaction. Trans R Soc Trop Med Hyg 93 :47–49.

    • Search Google Scholar
    • Export Citation
  • 14

    Aransay AM, Scoulica E, Tselentis Y, 2000. Detection and identification of Leishmania DNA within naturally infected sand flies by seminested PCR on minicircle kinetoplast DNA. Appl Environ Microbiol 66 :1933–1938.

    • Search Google Scholar
    • Export Citation
  • 15

    Arnot DE, Barker DC, 1981. Biochemical identification of cutaneous Leishmania by analysis of kinetplast DNA II. Sequence homologies in Leishmania kDNA. Mol Biochem Parasitol 3 :47–56.

    • Search Google Scholar
    • Export Citation
  • 16

    Englund PT, 1981. Kinetoplast DNA. Levandowsky M, Hunter SH, eds. Biochemistry and Physiology of Protozoa. Second edition. New York: Academic Press, 333–383.

  • 17

    Hillis DM, Moritz C, Porter CA, Baker RJ, 1991. Evidence for biased gene conversion in concerted evolution of ribosomal DNA. Science 251 :308–310.

    • Search Google Scholar
    • Export Citation
  • 18

    Haralambous C, Antoniou M, Pratlong F, Dedet JP, Soteriadou K, 2008. Development of a molecular assay specific for the Leishmania donovani complex that discriminates L. donovani/Leishmania infantum zymodemes: a useful tool for typing MON–1. Diagn Microbiol Infect Dis 60 :33–42.

    • Search Google Scholar
    • Export Citation
  • 19

    Anders G, Eisenberger CL, Jonas F, Greenblatt CL, 2002. Distinguishing Leishmania tropica and Leishmania major in the Middle East using the polymerase chain reaction with kinetoplast DNA-specific primers. Trans R Soc Trop Med Hyg 96 (Suppl 1):S87–S92.

    • Search Google Scholar
    • Export Citation
  • 20

    Ready PD, Lainson R, Shaw JJ, Souza AA, 1991. DNA probes for distinguishing Psychodopygus wellcomei from Psychodopygus complexus (Diptera: Psychodidae). Mem Inst Oswaldo Cruz 86 :41–49.

    • Search Google Scholar
    • Export Citation
  • 21

    Cupolillo E, Grimaldi G Jr, Momen H, Beverly SM, 1995. Intergenic region typing (IRT): a rapid molecular approach to the characterization and evolution of Leishmania. Mol Biochem Parasitol 73 :145–155.

    • Search Google Scholar
    • Export Citation
  • 22

    Thompson JD, Higgins DG, Gibson TJ, 1994. CLUSTAL W: 332 improving the sensitivity of progressive multiple sequence alignment through sequence weighting position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22 :4673–4680.

    • Search Google Scholar
    • Export Citation
  • 23

    Steiner JJ, Poklemba CJ, Fjellstrom RG, Elliott LF, 1995. A rapid one-tube genomic DNA extraction process for PCR and RAPD analyses. Nucleic Acids Res 23 :2569–2570.

    • Search Google Scholar
    • Export Citation
  • 24

    Oshaghi MA, Chavshin AR, Vatandoost H, 2006. Analysis of mosquito bloodmeals using RFLP markers. Exp Parasitol 114 :259–264.

  • 25

    Kocher TD, Thomas WK, Meyer A, Edwards SV, Paabo S, Villablanca FX, Wilson AC, 1989. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci USA 86 :6196–6200.

    • Search Google Scholar
    • Export Citation
  • 26

    Boakye DA, Tang J, Truc P, Merriweather A, Unnasch TR, 1999. Identification of bloodmeals in haematophagous diptera by cytochrome B heteroduplex analysis. Med Vet Entomol 13 :282–287.

    • Search Google Scholar
    • Export Citation
  • 27

    Kent RJ, Norris DE, 2005. Identification of mammalian blood meals in mosquitoes by a multiplexed polymerase chain reaction targeting cytochrome b. Am J Trop Med Hyg 73 :336–342.

    • Search Google Scholar
    • Export Citation
  • 28

    Vincze T, Posfai J, Roberts RJ, 2003. NEBcutter: a program to cleave DNA with restriction enzymes. Nucleic Acids Res 31 :3688–3691.

  • 29

    Edrissian GH, Manochehri AV, Hafizi A, 1985. Application of an enzyme-linked immunosorbent assay (ELISA) for determination of the human blood index in anopheline mosquitoes collected in Iran. J Am Mosq Cont Assoc 1 :349–352.

    • Search Google Scholar
    • Export Citation
  • 30

    Parvizi P, Mazloumi-Gavgani AS, Davies CR, Courtenay O, Ready PD, 2008. Two Leishmania species circulating in the Kaleybar focus of infantile visceral leishmaniasis, northwest Iran: implications for deltamethrin dog collar intervention. Trans R Soc Trop Med Hyg 102 :891–897.

    • Search Google Scholar
    • Export Citation
  • 31

    Maroli M, Gramiccia M, Gradoni L, 1987. Natural infection of Phlebotomus perfiliewi with Leishmania infantum in a cutaneous leishmaniasis focus of the Abruzzi region, Italy. Trans R Soc Trop Med Hyg 81 :596–598.

    • Search Google Scholar
    • Export Citation
  • 32

    Gállego M, Pratlong F, Fisa R, Riera C, Rioux JA, Dedet JP, Portús M, 2001. The life-cycle of Leishmania infantum MON-77 in the Priorat (Catalonia, Spain) involves humans, dogs and sandflies; also literature review of distribution and hosts of L. infantum zymodemes in the Old World. Trans R Soc Trop Med Hyg 95 :269–271.

    • Search Google Scholar
    • Export Citation
  • 33

    Izri MA, Belazzoug S, 1993. Phlebotomus (Larroussius) perfiliewi naturally infected with dermotropic Leishmania infantum at Tenes, Algeria. Trans R Soc Trop Med Hyg 87 :399.

    • Search Google Scholar
    • Export Citation
  • 34

    Killick-Kendrick R, 1990. The life-cycle of Leishmania in the sand-fly with special reference to the form infective to the vertebrate host. Ann Parasitol Hum Comp 65 (Suppl 1):37–42.

    • Search Google Scholar
    • Export Citation
  • 35

    Zhang LM, Leng YJ, 1997. Eighty-year research of phlebotomine sandflies (Diptera: Psychodidae) in China (1915–1995). II. Phlebotomine vectors of leishmaniasis in China. Parasite 4 :299–306.

    • Search Google Scholar
    • Export Citation
  • 36

    Nadim A, Navid-Hamidi E, Javadian E, Tahvildar-bidrouni G, Amini H, 1987. Present status of kala-azar in Iran. Am J Trop Med Hyg 27 :25–28.

    • Search Google Scholar
    • Export Citation
  • 37

    Sacks D, 2001. Leishmania-sand fly interactions controlling species-specific vector competence. Cell Microbiol 3 :189–196.

  • 38

    Osman OF, Oskam L, Kroon NC, School GJ, Khalil ET, EL-Hassan AM, Ziglstra EE, Kager PA, 1988. Use of PCR for diagnosis of post kala-azar dermal leishmaniasis (PKDL). J Clin Microbiol 36 :1621–1624.

    • Search Google Scholar
    • Export Citation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vector Incrimination of Sand Flies in the Most Important Visceral Leishmaniasis Focus in Iran

View More View Less
  • 1 Department of Medical Entomology and Vector Control, and Department of Medical Parasitology, School of Public Health and Institute of Health Research, Tehran University of Medical Sciences, Tehran, Iran; Department of Medical Parasitology and Entomology, College of Medical Sciences, Tarbiat Modares University, Tehran, Iran

The prevalence, host preference, and rate of Leishmania spp. infection of sand fly species are important parameters for incrimination of parasite vectors. We applied polymerase chain reaction (PCR)-based and enzyme-linked immunosorbent assay (ELISA) methods to detect Leishmania spp. parasites and blood meals within individual sand flies in the most important visceral leishmaniasis (VL) focus in northwestern Iran. Leishmania spp. minicircles (kinetoplast DNA) were found in 14 (0.9%) of 1,569 female specimens. Sequence analysis of 650 basepairs of an internal transcribed spacer ribosomal DNA gene identified L. infantum/L. donovani in 12 specimens and L. adleri-like parasites in 2 specimens. Nine (64.3%) of 14 of the Leishmania spp.–positive sand flies were Phlebotomus perfeliewi transcaucasicus. Blood meal identification of host DNA within sand flies by PCR-based and ELISA methods showed that 30% and 28%, respectively, were positive for human blood. Results of this study showed that P. perfeliewi transcaucasicus is the most prevalent, infected, and anthropophagic sand fly and plays a major role in VL transmission in the region studied.

Save