• 1

    Cox J, Hay SI, Abeku TA, Checchi F, Snow RW, 2007. The uncertain burden of Plasmodium falciparum epidemics in Africa. Trends Parasitol 23 :142–148.

    • Search Google Scholar
    • Export Citation
  • 2

    Vekemans J, Ballou WR, 2008. Plasmodium falciparum malaria vaccines in development. Expert Rev Vaccines 7 :223–240.

  • 3

    Richie T, 2006. High road, low road? Choices and challenges on the pathway to a malaria vaccine. Parasitology 133 (Suppl):S113–S144.

  • 4

    Snow RW, Omumbo JA, Lowe B, Molyneux CS, Obiero JO, Palmer A, Weber MW, Pinder M, Nahlen B, Obonyo C, Newbold C, Gupta S, Marsh K, 1997. Relation between severe malaria morbidity in children and level of Plasmodium falciparum transmission in Africa. Lancet 349 :1650–1654.

    • Search Google Scholar
    • Export Citation
  • 5

    Hay SI, Noor AM, Simba M, Busolo M, Guyatt HL, Ochola SA, Snow RW, 2002. Clinical epidemiology of malaria in the highlands of western Kenya. Emerg Infect Dis 8 :543–548.

    • Search Google Scholar
    • Export Citation
  • 6

    Doolan DL, Hoffman SL, 1997. Pre-erythrocytic-stage immune effector mechanisms in Plasmodium spp. infections. Philos Trans R Soc Lond B Biol Sci 352 :1361–1367.

    • Search Google Scholar
    • Export Citation
  • 7

    Connelly M, King CL, Bucci K, Walters S, Genton B, Alpers MP, Hollingdale M, Kazura JW, 1997. T-cell immunity to peptide epitopes of liver-stage antigen 1 in an area of Papua New Guinea in which malaria is holoendemic. Infect Immun 65 :5082–5087.

    • Search Google Scholar
    • Export Citation
  • 8

    Moormann AM, John CC, Sumba PO, Tisch D, Embury P, Kazura JW, 2006. Stability of interferon-gamma and interleukin-10 responses to Plasmodium falciparum liver stage antigen-1 and thrombospondin-related adhesive protein in residents of a malaria holoendemic area. Am J Trop Med Hyg 74 :585–590.

    • Search Google Scholar
    • Export Citation
  • 9

    Flanagan KL, Mwangi T, Plebanski M, Odhiambo K, Ross A, Sheu E, Kortok M, Lowe B, Marsh K, Hill AV, 2003. Ex vivo interferon-gamma immune response to thrombospondin-related adhesive protein in coastal Kenyans: longevity and risk of Plasmodium falciparum infection. Am J Trop Med Hyg 68 :421–430.

    • Search Google Scholar
    • Export Citation
  • 10

    Kurtis JD, Hollingdale MR, Luty AJ, Lanar DE, Krzych U, Duffy PE, 2001. Pre-erythrocytic immunity to Plasmodium falciparum: the case for an LSA-1 vaccine. Trends Parasitol 17 :219–223.

    • Search Google Scholar
    • Export Citation
  • 11

    Luty AJ, Lell B, Schmidt-Ott R, Lehman LG, Luckner D, Greve B, Matousek P, Herbich K, Schmid D, Ulbert S, Migot-Nabias F, Dubois B, Deloron P, Kremsner PG, 1998. Parasite antigen- specific interleukin-10 and antibody reponses predict accelerated parasite clearance in Plasmodium falciparum malaria. Eur Cytokine Netw 9 :639–646.

    • Search Google Scholar
    • Export Citation
  • 12

    Hoffman SL, Isenbarger D, Long GW, Sedegah M, Szarfman A, Waters L, Hollingdale MR, van der Meide PH, Finbloom DS, Ballou WR, 1989. Sporozoite vaccine induces genetically restricted T cell elimination of malaria from hepatocytes. Science 244 :1078–1081.

    • Search Google Scholar
    • Export Citation
  • 13

    John CC, Moormann AM, Sumba PO, Ofulla AV, Pregibon DC, Kazura JW, 2004. Gamma interferon responses to Plasmodium falciparum liver-stage antigen 1 and thrombospondin-related adhesive protein and their relationship to age, transmission intensity, and protection against malaria. Infect Immun 72 :5135–5142.

    • Search Google Scholar
    • Export Citation
  • 14

    John CC, Sumba PO, Ouma JH, Nahlen BL, King CL, Kazura JW, 2000. Cytokine responses to Plasmodium falciparum liver-stage antigen 1 vary in rainy and dry seasons in highland Kenya. Infect Immun 68 :5198–5204.

    • Search Google Scholar
    • Export Citation
  • 15

    John CC, McHugh MM, Moormann AM, Sumba PO, Ofulla AV, 2005. Low prevalence of Plasmodium falciparum infection among asymptomatic individuals in a highland area of Kenya. Trans R Soc Trop Med Hyg 99 :780–786.

    • Search Google Scholar
    • Export Citation
  • 16

    Aidoo M, Lalvani A, Allsopp CE, Plebanski M, Meisner SJ, Krausa P, Browning M, Morris-Jones S, Gotch F, Fidock DA, 1995. Identification of conserved antigenic components for a cytotoxic T lymphocyte-inducing vaccine against malaria. Lancet 345 :1003–1007.

    • Search Google Scholar
    • Export Citation
  • 17

    Flanagan KL, Lee EA, Gravenor MB, Reece WH, Urban BC, Doherty T, Bojang KA, Pinder M, Hill AV, Plebanski M, 2001. Unique T cell effector functions elicited by Plasmodium falciparum epitopes in malaria-exposed Africans tested by three T cell assays. J Immunol 167 :4729–4737.

    • Search Google Scholar
    • Export Citation
  • 18

    Cao K, Moormann AM, Lyke KE, Masaberg C, Sumba OP, Doumbo OK, Koech D, Lancaster A, Nelson M, Meyer D, Single R, Hartzman RJ, Plowe CV, Kazura J, Mann DL, Sztein MB, Thomson G, Fernandez-Vina MA, 2004. Differentiation between African populations is evidenced by the diversity of alleles and haplotypes of HLA class I loci. Tissue Antigens 63 :293–325.

    • Search Google Scholar
    • Export Citation
  • 19

    Schofield L, Villaquiran J, Ferreira A, Schellekens H, Nussenzweig R, Nussenzweig V, 1987. Gamma interferon, CD8+ T cells and antibodies required for immunity to malaria sporozoites. Nature 330 :664–666.

    • Search Google Scholar
    • Export Citation
  • 20

    Wang R, Charoenvit Y, Corradin G, de la Vega P, Franke ED, Hoffman SL, 1996. Protection against malaria by Plasmodium yoelii sporozoite surface protein 2 linear peptide induction of CD4+ T cell- and IFN-gamma-dependent elimination of infected hepatocytes. J Immunol 157 :4061–4067.

    • Search Google Scholar
    • Export Citation
  • 21

    Ong’echa JM, Lal AA, Terlouw DJ, Ter Kuile FO, Kariuki SK, Udhayakumar V, Orago AS, Hightower AW, Nahlen BL, Shi YP, 2003. Association of interferon-gamma responses to pre- erythrocytic stage vaccine candidate antigens of Plasmodium falciparum in young Kenyan children with improved hemoglobin levels: XV. Asembo Bay Cohort Project. Am J Trop Med Hyg 68 :590–597.

    • Search Google Scholar
    • Export Citation
  • 22

    Sun P, Schwenk R, White K, Stoute JA, Cohen J, Ballou WR, Voss G, Kester KE, Heppner DG, Krzych U, 2003. Protective immunity induced with malaria vaccine, RTS,S, is linked to Plasmodium falciparum circumsporozoite protein-specific CD4+ and CD8+ T cells producing IFN-gamma. J Immunol 171 :6961–6967.

    • Search Google Scholar
    • Export Citation
  • 23

    Day NP, Hien TT, Schollaardt T, Loc PP, Chuong LV, Chau TT, Mai NT, Phu NH, Sinh DX, White NJ, Ho M, 1999. The prognostic and pathophysiologic role of pro- and antiinflammatory cytokines in severe malaria. J Infect Dis 180 :1288–1297.

    • Search Google Scholar
    • Export Citation
  • 24

    Dodoo D, Omer FM, Todd J, Akanmori BD, Koram KA, Riley EM, 2002. Absolute levels and ratios of proinflammatory and anti-inflammatory cytokine production in vitro predict clinical immunity to Plasmodium falciparum malaria. J Infect Dis 185 :971–979.

    • Search Google Scholar
    • Export Citation
  • 25

    Kurtzhals JA, Adabayeri V, Goka BQ, Akanmori BD, Oliver-Commey JO, Nkrumah FK, Behr C, Hviid L, 1998. Low plasma concentrations of interleukin 10 in severe malarial anaemia compared with cerebral and uncomplicated malaria. Lancet 351 :1768–1772.

    • Search Google Scholar
    • Export Citation
  • 26

    Othoro C, Lal AA, Nahlen B, Koech D, Orago AS, Udhayakumar V, 1999. A low interleukin-10 tumor necrosis factor-alpha ratio is associated with malaria anemia in children residing in a holoendemic malaria region in western Kenya. J Infect Dis 179 :279–282.

    • Search Google Scholar
    • Export Citation
  • 27

    Lefrancois L, 2002. Dual personality of memory T cells. Trends Immunol 23 :226–228.

  • 28

    Pearce EL, Shen H, 2006. Making sense of inflammation, epigenetics, and memory CD8+ T-cell differentiation in the context of infection. Immunol Rev 211 :197–202.

    • Search Google Scholar
    • Export Citation
  • 29

    Malhotra I, Wamachi AN, Mungai PL, Mzungu E, Koech D, Muchiri E, Moormann AM, King CL, 2008. Fine specificity of neonatal lymphocytes to an abundant malaria blood-stage antigen: epitope mapping of Plasmodium falciparum MSP133. J Immunol 180 :3383–3390.

    • Search Google Scholar
    • Export Citation
  • 30

    Seder RA, Darrah PA, Roederer M, 2008. T-cell quality in memory and protection: implications for vaccine design. Nat Rev Immunol 8 :247–258.

    • Search Google Scholar
    • Export Citation
  • 31

    Sidney J, Peters B, Frahm N, Brander C, Sette A, 2008. HLA class I supertypes: a revised and updated classification. BMC Immunol 9 :1.

  • 32

    Baird JK, 1998. Age-dependent characteristics of protection v. susceptibility to Plasmodium falciparum. Ann Trop Med Parasitol 92 :367–390.

    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 148 67 4
PDF Downloads 20 11 2
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Stability of Interferon-Gamma and Interleukin-10 Responses to Plasmodium falciparum Liver Stage Antigen 1 and Thrombospondin-Related Adhesive Protein Immunodominant Epitopes in a Highland Population from Western Kenya

View More View Less
  • 1 Center for Global Health and Diseases, and Department of Epidemiology and Biostatistics, Case Western Reserve University School of Medicine, Cleveland, Ohio; Kenya Medical Research Institute, Center for Global Heath and Research, Kisumu, Kenya; Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
Restricted access

Long-term planning to prevent malaria epidemics requires in-depth understanding of immunity to Plasmodium falciparum in areas of unstable transmission. Cytokine responses to immunodominant epitope peptides from liver stage antigen 1 (LSA-1) and thrombospondin-related adhesive protein (TRAP) were evaluated over a nine-month interval in adults and children in Kenya from a malaria epidemic–prone highland area after several years of low transmission. The proportion and magnitude of interferon-gamma ELISPOT responses and the proportion of interleukin-10 responders to LSA-1 and TRAP peptides tended to be higher in adults than children. Frequencies of interferon-gamma responders to these peptides were similar at the two time points, but responses were not consistently generated by the same persons. These results suggest that T cell memory to pre-erythrocytic stage malaria antigens is maintained but may be unavailable for consistent detection in peripheral blood, and that these antigens induce both pro-inflammatory and anti-inflammatory cytokine responses in this population.

Save