Immunolocalization and Challenge Studies Using a Recombinant Vibrio cholerae Ghost Expressing Trypanosoma brucei Ca2+ ATPase (TBCA2) Antigen

Kiantra Ramey Department of Microbiology, Biochemistry and Immunology, Department of Obstetrics and Gynecology and Cooperative Reproductive Science Research Center, Morehouse School of Medicine, Atlanta, Georgia; National Center for Infectious Diseases, Centers for Disease Control, Atlanta, Georgia

Search for other papers by Kiantra Ramey in
Current site
Google Scholar
PubMed
Close
,
Francis O. Eko Department of Microbiology, Biochemistry and Immunology, Department of Obstetrics and Gynecology and Cooperative Reproductive Science Research Center, Morehouse School of Medicine, Atlanta, Georgia; National Center for Infectious Diseases, Centers for Disease Control, Atlanta, Georgia

Search for other papers by Francis O. Eko in
Current site
Google Scholar
PubMed
Close
,
Winston E. Thompson Department of Microbiology, Biochemistry and Immunology, Department of Obstetrics and Gynecology and Cooperative Reproductive Science Research Center, Morehouse School of Medicine, Atlanta, Georgia; National Center for Infectious Diseases, Centers for Disease Control, Atlanta, Georgia

Search for other papers by Winston E. Thompson in
Current site
Google Scholar
PubMed
Close
,
Henry Armah Department of Microbiology, Biochemistry and Immunology, Department of Obstetrics and Gynecology and Cooperative Reproductive Science Research Center, Morehouse School of Medicine, Atlanta, Georgia; National Center for Infectious Diseases, Centers for Disease Control, Atlanta, Georgia

Search for other papers by Henry Armah in
Current site
Google Scholar
PubMed
Close
,
Joseph U. Igietseme Department of Microbiology, Biochemistry and Immunology, Department of Obstetrics and Gynecology and Cooperative Reproductive Science Research Center, Morehouse School of Medicine, Atlanta, Georgia; National Center for Infectious Diseases, Centers for Disease Control, Atlanta, Georgia

Search for other papers by Joseph U. Igietseme in
Current site
Google Scholar
PubMed
Close
, and
Jonathan K. Stiles Department of Microbiology, Biochemistry and Immunology, Department of Obstetrics and Gynecology and Cooperative Reproductive Science Research Center, Morehouse School of Medicine, Atlanta, Georgia; National Center for Infectious Diseases, Centers for Disease Control, Atlanta, Georgia

Search for other papers by Jonathan K. Stiles in
Current site
Google Scholar
PubMed
Close
Restricted access

Human African trypanosomiasis is a neglected disease caused by Trypanosoma brucei spp. A parasite cation pump (Ca2+ ATPase; TBCA2) essential for survival and cation homeostasis was identified and characterized. It was hypothesized that targeting this pump using a Vibrio cholerae ghost (VCG)-based vaccine could protect against murine T. brucei infection. mRNA and protein expression of TBCA2 was differentially expressed in blood and insect stages of parasites and immunolocalized in the pericellular membrane and the flagellar pocket of bloodstream forms. Antigen-specific antibodies and Th1 cytokines, interleukin-2, interferon-gamma, and tumor necrosis factor-alpha were induced in rVCG-TBCA2-immunized mice and in vitro on antigen stimulation of splenic immune T cells, but the corresponding Th2-type response was unremarkable. Despite an increased median survival of 6 days in vaccinated mice, the mice were not protected against infection. Thus, immunization of mice produced robust parasite-specific antibodies but failed to protect mice against parasite challenge.

Author Notes

  • 1

    Fevre EM, Picozzi K, Jannin J, Welburn SC, Maudlin I, 2006. Human African trypanosomiasis. Epidemiol Control 61 :167–221.

  • 2

    Bouteille B, Oukem O, Bisser S, Dumas M, 2003. Treatment perspectives for human African trypanosomiasis. Fundam Clin Pharmacol 17 :171–181.

  • 3

    Fraser-L’Hostis C, frise-Quertain F, Coral D, Deshusses J, 1997. Regulation of the intracellular pH in the protozoan parasite Trypanosoma brucei brucei. Biol Chem 378 :1039–1046.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4

    Benaim G, Lopez-Estrano C, Docampo R, Moreno SN, 1993. A calmodulin-stimulated Ca2+ pump in plasma-membrane vesicles from Trypanosoma brucei; selective inhibition by pentamidine. Biochem J 296 :759–763.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5

    Docampo R, Gadelha FR, Moreno SN, Benaim G, Hoffmann ME, Vercesi AE, 1993. Disruption of Ca2+ homeostasis in Trypanosoma cruzi by crystal violet. J Eukaryot Microbiol 40 :311–316.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6

    Vercesi AE, Moreno SN, Bernardes CF, Meinicke AR, Fernandes EC, Docampo R, 1993. Thapsigargin causes Ca2+ release and collapse of the membrane potential of Trypanosoma brucei mitochondria in situ and of isolated rat liver mitochondria. J Biol Chem 268 :8564–8568.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7

    Catisti R, Uyemura SA, Docampo R, Vercesi AE, 2000. Calcium mobilization by arachidonic acid in trypanosomatids. Mol Biochem Parasitol 105 :261–271.

  • 8

    Parsons M, Ruben L, 2000. Pathways involved in environmental sensing in trypanosomatids. Parasitol Today 16 :56–62.

  • 9

    Lu HG, Zhong L, de Souza W, Benchimol M, Moreno S, Docampo R, 1998. Ca2+ content and expression of an acidocalcisomal calcium pump are elevated in intracellular forms of Trypanosoma cruzi. Mol Cell Biol 18 :2309–2323.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10

    Luo S, Ruiz FA, Moreno SN, 2005. The acidocalcisome Ca2+-ATPase (TgA1) of Toxoplasma gondii is required for polyphosphate storage, intracellular calcium homeostasis and virulence. Mol Microbiol 55 :1034–1045.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11

    Moreno SN, Docampo R, Vercesi AE, 1992. Calcium homeostasis in procyclic and bloodstream forms of Trypanosoma brucei. Lack of inositol 1,4,5-trisphosphate-sensitive Ca2+ release. J Biol Chem 267 :6020–6026.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12

    Nolan DP, Reverlard P, Pays E, 1994. Overexpression and characterization of a gene for a Ca(2+)-ATPase of the endoplasmic reticulum in Trypanosoma brucei. J Biol Chem 269 :26045–26051.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13

    Luo S, Rohloff P, Cox J, Uyemura SA, Docampo R, 2004. Trypanosoma brucei plasma membrane-type Ca(2+)-ATPase 1 (TbPMC1) and 2 (TbPMC2) genes encode functional Ca(2+)-ATPases localized to the acidocalcisomes and plasma membrane, and essential for Ca(2+) homeostasis and growth. J Biol Chem 279 :14427–14439.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14

    Walter RD, Opperdoes FR, 1982. Subcellular distribution of ade-nylate cyclase, cyclic-AMP phosphodiesterase, protein kinases and phosphoprotein phosphatase in Trypanosoma brucei. Mol Biochem Parasitol 6 :287–295.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15

    Coppens I, Opperdoes FR, Courtoy PJ, Baudhuin P, 1987. Receptor-mediated endocytosis in the bloodstream form of Trypanosoma brucei. J Protozool 34 :465–473.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16

    Coppens I, Baudhuin P, Opperdoes FR, Courtoy PJ, 1988. Receptors for the host low density lipoproteins on the hemofla-gellate Trypanosoma brucei: purification and involvement in the growth of the parasite. Proc Natl Acad Sci USA 85 :6753–6757.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17

    Stijlemans B, Conrath K, Cortez-Retamozo V, Van Xong H, Wyns L, Senter P, Revets H, De Baetselier P, Muyldermans S, Magez S, 2004. Efficient targeting of conserved cryptic epitopes of infectious agents by single domain antibodies. African trypanosomes as paradigm. J Biol Chem 279 :1256–1261.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    Olenick JG, Wolff R, Nauman RK, McLaughlin J, 1988. A flagellar pocket membrane fraction from Trypanosoma brucei rhodesiense: immunogold localization and nonvariant immunoprotection. Infect Immun 56 :92–98.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19

    McLaughlin J, 1987. Trypanosoma rhodesiense: antigenicity and immunogenicity of flagellar pocket membrane components. Exp Parasitol 64 :1–11.

  • 20

    Hamadien M, Lycke N, Bakhiet M, 1999. Induction of the trypanosome lymphocyte-triggering factor (TLTF) and neutralizing antibodies to the TLTF in experimental african trypanosomiasis. Immunology 96 :606–611.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21

    Stiles JK, Kucerova Z, Sarfo B, Meade CA, Thompson W, Shah P, Xue L, Meade JC, 2003. Identification of surface-membrane P-type ATPases resembling fungal K(+)- and Na(+)-ATPases, in Trypanosoma brucei, Trypanosoma cruzi and Leishmania donovani. Ann Trop Med Parasitol 97 :351–366.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22

    Marchesini N, Luo S, Rodrigues CO, Moreno SN, Docampo R, 2000. Acidocalcisomes and a vacuolar H+-pyrophosphatase in malaria parasites. Biochem J 347 :243–253.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23

    Stojdl DF, Clarke MW, 1996. Trypanosoma brucei: analysis of cytoplasmic Ca2+ during differentiation of bloodstream stages in vitro. Exp Parasitol 83 :134–146.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24

    Uhlemann AC, Cameron A, Eckstein-Ludwig U, Fischbarg J, Iserovich P, Zuniga FA, East M, Lee A, Brady L, Haynes RK, Krishna S, 2005. A single amino acid residue can determine the sensitivity of SERCAs to artemisinins. Nat Struct Mol Biol 12 :628–629.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25

    Eko FO, Lubitz W, McMillan L, Ramey K, Moore TT, Ananaba GA, Lyn D, Black CM, Igietseme JU, 2003. Recombinant Vibrio cholerae ghosts as a delivery vehicle for vaccinating against Chlamydia trachomatis. Vaccine 21 :1694–1703.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    Gomes YM, Carvalho AB, Santos ML, Cavalcanti VM, Monjour L, 1992. Isolation of Trypanosoma cruzi from blood by histopaque and continuous percoll gradient centrifugations. Appl Biochem Biotechnol 33 :183–192.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27

    Alonso G, Guevara P, Ramirez JL, 1992. Trypanosomatidae codon usage and GC distribution. Mem Inst Oswaldo Cruz 87 :517–523.

  • 28

    Fagan MJ, Saier MH Jr, 1994. P-type ATPases of eukaryotes and bacteria: sequence analyses and construction of phylogenetic trees. J Mol Evol 38 :57–99.

  • 29

    Moller JV, Juul B, Le Maire M, 1996. Structural organization, ion transport, and energy transduction of P-type ATPases. Biochim Biophys Acta 1286 :1–51.

  • 30

    Deflorin J, Rudolf M, Seebeck T, 1994. The major components of the paraflagellar rod of Trypanosoma brucei are two similar, but distinct proteins which are encoded by two different gene loci. J Biol Chem 269 :28745–28751.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31

    Trebak M, Chong JM, Herlyn D, Speicher DW, 1999. Efficient laboratory-scale production of monoclonal antibodies using membrane-based high-density cell culture technology. J Immunol Methods 230 :59–70.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32

    Stiles JK, Meade JC, Kucerova Z, Lyn D, Thompson W, Zakeri Z, Whittaker J, 2001. Trypanosoma brucei infection induces apoptosis and up-regulates neuroleukin expression in the cerebellum. Ann Trop Med Parasitol 95 :797–810.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33

    Thompson WE, Powell JM, Whittaker JA, Sridaran R, Thomas KH, 1999. Immunolocalization and expression of prohibitin, a mitochondrial associated protein within the rat ovaries. Anat Rec 256 :40–48.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34

    Thompson WE, Branch A, Whittaker JA, Lyn D, Zilberstein M, Mayo KE, Thomas K, 2001. Characterization of prohibitin in a newly established rat ovarian granulosa cell line. Endocrinology 142 :4076–4085.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35

    Szostak M, Wanner G, Lubitz W, 1990. Recombinant bacterial ghosts as vaccines. Res Microbiol 141 :1005–1007.

  • 36

    Eko FO, Witte A, Huter V, Kuen B, Furst-Ladani S, Haslberger A, Katinger A, Hensel A, Szostak MP, Resch S, Mader H, Raza P, Brand E, Marchart J, Jechlinger W, Haidinger W, Lubitz W, 1999. New strategies for combination vaccines based on the extended recombinant bacterial ghost system. Vaccine 17 :1643–1649.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37

    Eko FO, Szostak MP, Wanner G, Lubitz W, 1994. Production of Vibrio cholerae ghosts (VCG) by expression of a cloned phage lysis gene: potential for vaccine development. Vaccine 12 :1231–1237.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38

    Mermod N, Ramos JL, Lehrbach PR, Timmis KN, 1986. Vector for regulated expression of cloned genes in a wide range of gram-negative bacteria. J Bacteriol 167 :447–454.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39

    Eko FO, Hensel A, Bunka S, Lubitz W, 1994. Immunogenicity of Vibrio cholerae ghosts following intraperitoneal immunization of mice. Vaccine 12 :1330–1334.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40

    Duleu S, Vincendeau P, Courtois P, Semballa S, Lagroye I, Daulouede S, Boucher JL, Wilson KT, Veyret B, Gobert AP, 2004. Mouse strain susceptibility to trypanosome infection: an arginase-dependent effect. J Immunol 172 :6298–6303.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41

    Igietseme JU, Uriri IM, Kumar SN, Ananaba GA, Ojior OO, Momodu IA, Candal DH, Black CM, 1998. Route of infection that induces a high intensity of gamma interferon-secreting T cells in the genital tract produces optimal protection against Chlamydia trachomatis infection in mice. Infect Immun 66 :4030–4035.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42

    Bonay P, Duran-Chica I, Fresno M, Alarcon B, Alcina A, 1998. Antiparasitic effects of the intra-Golgi transport inhibitor meg-alomicin. Antimicrob Agents Chemother 42 :2668–2673.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43

    Harris TH, Mansfield JM, Paulnock DM, 2007. CpG oligodeoxy-nucleotide treatment enhances innate resistance and acquired immunity to African trypanosomes. Infect Immun 75 :2366–2373.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44

    Pays E, Vanhamme L, Perez-Morga D, 2004. Antigenic variation in Trypanosoma brucei: facts, challenges and mysteries. Curr Opin Microbiol 7 :369–374.

  • 45

    McCulloch R, 2004. Antigenic variation in African trypanosomes: monitoring progress. Trends Parasitol 20 :117–121.

  • 46

    Mkunza F, Olaho WM, Powell CN, 1995. Partial protection against natural trypanosomiasis after vaccination with a flagellar pocket antigen from Trypanosoma brucei rhodesiense. Vaccine 13 :151–154.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47

    Luhrs KA, Fouts DL, Manning JE, 2003. Immunization with recombinant paraflagellar rod protein induces protective immunity against Trypanosoma cruzi infection. Vaccine 21 :3058–3069.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48

    Magez S, Lucas R, Darji A, Songa EB, Hamers R, De BP, 1993. Murine tumour necrosis factor plays a protective role during the initial phase of the experimental infection with Trypanosoma brucei brucei. Parasite Immunol 15 :635–641.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49

    Magez S, Radwanska M, Beschin A, Sekikawa K, De BP, 1999. Tumor necrosis factor alpha is a key mediator in the regulation of experimental Trypanosoma brucei infections. Infect Immun 67 :3128–3132.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50

    Uzonna JE, Kaushik RS, Gordon JR, Tabel H, 1999. Cytokines and antibody responses during Trypanosoma congolense infections in two inbred mouse strains that differ in resistance. Parasite Immunol 21 :57–71.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51

    Hertz CJ, Filutowicz H, Mansfield JM, 1998. Resistance to the African trypanosomes is IFN-gamma dependent. J Immunol 161 :6775–6783.

  • 52

    Radwanska M, Guirnalda P, De TC, Ryffel B, Black S, Magez S, 2008. Trypanosomiasis-induced B cell apoptosis results in loss of protective anti-parasite antibody responses and abolishment of vaccine-induced memory responses. PLoS Pathol 4 :e1000078.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53

    Radwanska M, Magez S, Dumont N, Pays A, Nolan D, Pays E, 2000. Antibodies raised against the flagellar pocket fraction of Trypanosoma brucei preferentially recognize HSP60 in cDNA expression library. Parasite Immunol 22 :639–650.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54

    Shi M, Wei G, Pan W, Tabel H, 2006. Experimental African trypanosomiasis: a subset of pathogenic, IFN-gamma-producing, MHC class II-restricted CD4+ T cells mediates early mortality in highly susceptible mice. J Immunol 176 :1724–1732.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55

    Namangala B, Noel W, De BP, Brys L, Beschin A, 2001. Relative contribution of interferon-gamma and interleukin-10 to resistance to murine African trypanosomosis. J Infect Dis 183 :1794–1800.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56

    Bakhiet M, Olsson T, Edlund C, Hojeberg B, Holmberg K, Lorentzen J, Kristensson K, 1993. A Trypanosoma brucei brucei-derived factor that triggers CD8+ lymphocytes to interferon-gamma secretion: purification, characterization and protective effects in vivo by treatment with a monoclonal antibody against the factor. Scand J Immunol 37 :165–178.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57

    Bakhiet M, Olsson T, Mhlanga J, Buscher P, Lycke N, van der Meide PH, Kristensson K, 1996. Human and rodent interferon-gamma as a growth factor for Trypanosoma brucei. Eur J Immunol 26 :1359–1364.

    • PubMed
    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 1321 1271 23
Full Text Views 301 11 0
PDF Downloads 47 6 0
 

 

 

 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save