• 1

    Findlay GM, 1951. Sulphonamides and sulphones. Findlay GM, ed. Recent Advances in Chemotherapy, 3rd edition. London: J&A Churchill, Ltd., 377–403.

  • 2

    Hawkins VN, Joshi H, Rungsihirunrat K, Na-Bangchang K, Sibley CH, 2007. Antifolates can have a role in the treatment of Plasmodium vivax. Trends Parasitol 23 :213–222.

    • Search Google Scholar
    • Export Citation
  • 3

    Leslie T, Mayan MI, Hasan MA, Safi MH, Klinkenberg E, Whitty CJ, Rowland M, 2007. Sulfadoxine-pyrimethamine, chlorproguanil-dapsone, or chloroquine for the treatment of Plasmodium vivax malaria in Afghanistan and Pakistan: a randomized controlled trial. JAMA 297 :2201–2209.

    • Search Google Scholar
    • Export Citation
  • 4

    Gregson A, Plowe CV, 2005. Mechanisms of resistance of malaria parasites to antifolates. Pharmacol Rev 57 :117–145.

  • 5

    Hyde JE, 2005. Exploring the folate pathway in Plasmodium falciparum. Acta Trop 94 :191–206.

  • 6

    Sibley CH, Hyde JE, Sims PF, Plowe CV, Kublin JG, Mberu EK, Cowman AF, Winstanley PA, Watkins WM, Nzila AM, 2001. Pyrimethamine-sulfadoxine resistance in Plasmodium falciparum: what next? Trends Parasitol 17 :582–588.

    • Search Google Scholar
    • Export Citation
  • 7

    Triglia T, Cowman AF, 1994. Primary structure and expression of the dihydropteroate synthetase gene of Plasmodium falciparum. Proc Natl Acad Sci USA 91 :7149–7153.

    • Search Google Scholar
    • Export Citation
  • 8

    Triglia T, Menting JG, Wilson C, Cowman AF, 1997. Mutations in dihydropteroate synthase are responsible for sulfone and sulfonamide resistance in Plasmodium falciparum. Proc Natl Acad Sci USA 94 :13944–13949.

    • Search Google Scholar
    • Export Citation
  • 9

    Wang P, Lee CS, Bayoumi R, Djimde A, Doumbo O, Swedberg G, Dao LD, Mshinda H, Tanner M, Watkins WM, Sims PF, Hyde JE, 1997. Resistance to antifolates in Plasmodium falciparum monitored by sequence analysis of dihydropteroate synthetase and dihydrofolate reductase alleles in a large number of field samples of diverse origins. Mol Biochem Parasitol 89 :161–177.

    • Search Google Scholar
    • Export Citation
  • 10

    Korsinczky M, Fischer K, Chen N, Baker J, Rieckmann K, Cheng Q, 2004. Sulfadoxine resistance in Plasmodium vivax is associated with a specific amino acid in dihydropteroate synthase at the putative sulfadoxine-binding site. Antimicrob Agents Chemother 48 :2214–2222.

    • Search Google Scholar
    • Export Citation
  • 11

    Auliff A, Wilson DW, Russell B, Gao Q, Chen N, Anh le N, Maguire J, Bell D, O’Neil MT, Cheng Q, 2006. Amino acid mutations in Plasmodium vivax DHFR and DHPS from several geographical regions and susceptibility to antifolate drugs. Am J Trop Med Hyg 75 :617–621.

    • Search Google Scholar
    • Export Citation
  • 12

    Imwong M, Pukrittayakamee S, Cheng Q, Moore C, Looareesuwan S, Snounou G, White NJ, Day NP, 2005. Limited polymorphism in the dihydropteroate synthetase gene (dhps) of Plasmodium vivax isolates from Thailand. Antimicrob Agents Chemother 49 :4393–4395.

    • Search Google Scholar
    • Export Citation
  • 13

    Menegon M, Majori G, Severini C, 2006. Genetic variations of the Plasmodium vivax dihydropteroate synthase gene. Acta Trop 98 :196–199.

  • 14

    Rungsihirunrat K, Na-Bangchang K, Hawkins VN, Mungthin M, Sibley CH, 2007. Sensitivity to antifolates and genetic analysis of Plasmodium vivax isolates from Thailand. Am J Trop Med Hyg 76 :1057–1065.

    • Search Google Scholar
    • Export Citation
  • 15

    Rungsihirunrat K, Sibley CH, Mungthin M, Na-Bangchang K, 2008. Geographical distribution of amino acid mutations in Plasmodium vivax DHFR and DHPS from malaria endemic areas of Thailand. Am J Trop Med Hyg 78 :462–467.

    • Search Google Scholar
    • Export Citation
  • 16

    Schousboe ML, Rajakaruna RS, Salanti A, Hapuarachchi HC, Galappaththy GN, Bygbjerg IC, Amerasinghe PH, Konradsen F, Alifrangis M, 2007. Island-wide diversity in single nucleotide polymorphisms of the Plasmodium vivax dihydrofolate reductase and dihydropteroate synthetase genes in Sri Lanka. Malar J 6 :28.

    • Search Google Scholar
    • Export Citation
  • 17

    Anderson TJ, Roper C, 2005. The origins and spread of antimalarial drug resistance: lessons for policy makers. Acta Trop 94 :269–280.

  • 18

    Cortese JF, Caraballo A, Contreras CE, Plowe CV, 2002. Origin and dissemination of Plasmodium falciparum drug-resistance mutations in South America. J Infect Dis 186 :999–1006.

    • Search Google Scholar
    • Export Citation
  • 19

    McCollum AM, Mueller K, Villegas L, Udhayakumar V, Escalante AA, 2007. Common origin and fixation of Plasmodium falciparum dhfr and dhps mutations associated with sulfadoxine-pyrimethamine resistance in a low-transmission area in South America. Antimicrob Agents Chemother 51 :2085–2091.

    • Search Google Scholar
    • Export Citation
  • 20

    Roper C, Pearce R, Bredenkamp B, Gumede J, Drakeley C, Mosha F, Chandramohan D, Sharp B, 2003. Antifolate antimalarial resistance in southeast Africa: a population-based analysis. Lancet 361 :1174–1181.

    • Search Google Scholar
    • Export Citation
  • 21

    Pearce RJ, Pota H, Evehe MS, Ba el H, Mombo-Ngoma G, Malisa AL, Ord R, Inojosa W, Matondo A, Diallo DA, Mbacham W, van den Broek IV, Swarthout TD, Getachew A, Dejene S, Grobusch MP, Njie F, Dunyo S, Kweku M, Owusu-Agyei S, Chandramohan D, Bonnet M, Guthmann JP, Clarke S, Barnes KI, Streat E, Katokele ST, Uusiku P, Agboghoroma CO, Elegba OY, Cisse B, A-Elbasit IE, Giha HA, Kachur SP, Lynch C, Rwakimari JB, Chanda P, Hawela M, Sharp B, Naidoo I, Roper C, 2009. Multiple origins and regional dispersal of resistant dhps in African Plasmodium falciparum malaria. PLoS Med 6 :e1000055.

    • Search Google Scholar
    • Export Citation
  • 22

    Collins WE, Warren M, Huong AY, Skinner JC, Sutton BB, Stanfill PS, 1986. Studies of comparative infectivity of fifteen strains of Plasmodium vivax to laboratory-reared anopheline mosquitoes, with special reference to Anopheles culicifacies. J Parasitol 72 :521–524.

    • Search Google Scholar
    • Export Citation
  • 23

    Young MD, Porter JA Jr, Johnson CM, 1966. Plasmodium vivax transmitted from man to monkey to man. Science 153 :1006–1007.

  • 24

    Hawkins VN, Auliff A, Prajapati SK, Rungsihirunrat K, Hapuarachchi HC, Maestre A, O’Neil MT, Cheng Q, Joshi H, Na-Bangchang K, Sibley CH, 2008. Multiple origins of resistance-conferring mutations in Plasmodium vivax dihydrofolate reductase. Malar J 7 :72.

    • Search Google Scholar
    • Export Citation
  • 25

    Hastings MD, Porter KM, Maguire JD, Susanti I, Kania W, Bangs MJ, Sibley CH, Baird JK, 2004. Dihydrofolate reductase mutations in Plasmodium vivax from Indonesia and therapeutic response to sulfadoxine plus pyrimethamine. J Infect Dis 189 :744–750.

    • Search Google Scholar
    • Export Citation
  • 26

    Bandelt HJ, Forster P, Rohl A, 1999. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16 :37–48.

  • 27

    Nair S, Williams JT, Brockman A, Paiphun L, Mayxay M, Newton PN, Guthmann JP, Smithuis FM, Hien TT, White NJ, Nosten F, Anderson TJ, 2003. A selective sweep driven by pyrimethamine treatment in southeast Asian malaria parasites. Mol Biol Evol 20 :1526–1536.

    • Search Google Scholar
    • Export Citation
  • 28

    McCollum AM, Poe AC, Hamel M, Huber C, Zhou Z, Shi YP, Ouma P, Vulule J, Bloland P, Slutsker L, Barnwell JW, Udhayakumar V, Escalante AA, 2006. Antifolate resistance in Plasmodium falciparum : multiple origins and identification of novel dhfr alleles. J Infect Dis 194 :189–197.

    • Search Google Scholar
    • Export Citation
  • 29

    Pearce R, Malisa A, Kachur SP, Barnes K, Sharp B, Roper C, 2005. Reduced variation around drug-resistant dhfr alleles in African Plasmodium falciparum. Mol Biol Evol 22 :1834–1844.

    • Search Google Scholar
    • Export Citation
  • 30

    Ndiaye D, Daily JP, Sarr O, Ndir O, Gaye O, Mboup S, Roper C, Wirth DF, 2006. Defining the origin of Plasmodium falciparum resistant dhfr isolates in Senegal. Acta Trop 99 :106–111.

    • Search Google Scholar
    • Export Citation
  • 31

    Nash D, Nair S, Mayxay M, Newton PN, Guthmann JP, Nosten F, Anderson TJ, 2005. Selection strength and hitchhiking around two anti-malarial resistance genes. Proc Biol Sci 272 :1153–1161.

    • Search Google Scholar
    • Export Citation
  • 32

    Roper C, Pearce R, Nair S, Sharp B, Nosten F, Anderson T, 2004. Intercontinental spread of pyrimethamine-resistant malaria. Science 305 :1124.

    • Search Google Scholar
    • Export Citation
  • 33

    Triglia T, Cowman AF, 1999. The mechanism of resistance to sulfa drugs in Plasmodium falciparum. Drug Resist Updat 2 :15–19.

  • 34

    Wang P, Read M, Sims PF, Hyde JE, 1997. Sulfadoxine resistance in the human malaria parasite Plasmodium falciparum is determined by mutations in dihydropteroate synthetase and an additional factor associated with folate utilization. Mol Microbiol 23 :979–986.

    • Search Google Scholar
    • Export Citation
  • 35

    Baird JK, 2004. Chloroquine resistance in Plasmodium vivax. Antimicrob Agents Chemother 48 :4075–4083.

 
 
 

 

 
 
 

 

 

 

 

 

 

Assessment of the Origins and Spread of Putative Resistance-Conferring Mutations in Plasmodium vivax Dihydropteroate Synthase

View More View Less
  • 1 Department of Genome Sciences, University of Washington, Seattle, Washington; College of Public Health Sciences, Chulalongkorn University, Bangkok, Thailand; Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka; Grupo Salud y Comunidad, Universidad de Antioquia, Medellín, Colombia; Faculty of Allied Health Sciences, Thammasat University, Pathumthanee, Thailand

Infection with Plasmodium vivax is usually treated with chloroquine, but parasites are often exposed inadvertently to sulfadoxine-pyrimethamine. To infer patterns of selection and spread of resistant parasites in natural populations, we determined haplotypes of P. vivax dihydropteroate synthase (dhps) alleles that could confer resistance to sulfadoxine. We amplified the P. vivax pyrophosphokinase (pppk)–dhps region and its flanking intergenic regions from 92 contemporary global isolates. Introns and exons of pppk-dhps were highly polymorphic, as were the flanking intergenic regions. Eighteen haplotypes were associated with wild-type alleles, but several different putatively sulfadoxine-resistant alleles have arisen in areas of intensive sulfadoxine-pyrimethamine use. Even when they encoded changes to the same amino acid, these mutant alleles were associated with multiple different haplotypes. Two main conclusions can be drawn from these data. First, dhps alleles resistant to sulfadoxine have arisen multiple times under drug pressure. Second, there has been convergent evolution of a variety of alleles that could confer resistance to sulfa drugs.

Save