• 1

    World Health Organization (WHO), 2006 . Global Tuberculosis Control: Surveillance, Planning, Financing . Geneva: WHO.

  • 2

    Perri GD, Bonora S, 2004 . Which agents should we use for treatment of multidrug-resistant Mycobacterium tuberculosis? J Antimicrob Chemother 54 :593– 602.

    • Search Google Scholar
    • Export Citation
  • 3

    Raviglione MC, Smith IM, 2007 . XDR tuberculosis–implications for global public health. N Engl J Med 356 :656– 659.

  • 4

    Aziz MA, Wright A, Lazlo A, De Muynck A, Portaels F, Van Deun A, Wells C, Nunn P, Blanc L, Raviglione M, 2006 . Epidemiology of antituberculosis drug resistance (the Global Project on Antituberculosis Drug Resistance Surveillance): an updated analysis. Lancet 368 :2142– 2154.

    • Search Google Scholar
    • Export Citation
  • 5

    Barroso EC, Rodrigues JLN, Pinheiro VGF, Campelo CL, 2001 . Prevalência da tuberculose multirresistente no Estado do Ceará, 1990–1999. J Pneumol 27 :310– 314.

    • Search Google Scholar
    • Export Citation
  • 6

    Mehta JB, Shantaveerapa H, Byrd JRP Jr, Morton SE, Fountain F, Roy TM, 2001 . Utility of rifampin blood levels in the treatment and follow-up of active pulmonary tuberculosis in patients who were slow to respond to routine directly observed therapy. Chest 120 :1520– 1524.

    • Search Google Scholar
    • Export Citation
  • 7

    Peloquin CA, Macphee AA, Berning SE, 1993 . Malabsorption of antimicrobial medications. N Engl J Med 329 :1122– 1123.

  • 8

    Pinheiro VGF, Ramos LMA, Monteiro HS, Barroso EC, Bushen OY, Façanha MC, Peloquin CA, Guerrant RL, Lima ALM, 2006 . Intestinal permeability and malabsorption of rifampin and isoniazid in active pulmonary tuberculosis. Braz J Infect Dis 10 :374– 379.

    • Search Google Scholar
    • Export Citation
  • 9

    Berning SE, Huitt GA, Iseman MD, Peloquin CA, 1992 . Malabsorption of antituberculosis medications by a patient with AIDS. N Engl J Med 327 :1817– 1818.

    • Search Google Scholar
    • Export Citation
  • 10

    Gurumurthy P, Ramachandran G, Kumar AKH, Rajasekaran S, Padmapriyadarsini C, Swaminathan S, Venkatesan P, Sekar L, Bhagavathy S, Mahilmaran A, Ravachandran N, Paramesh P, 2004 . Decreased bioavailability of rifampin and other antituberculosis drugs in patients with advanced human immunodeficiency. Antimicrob Agents Chemother 48 :4473– 4475.

    • Search Google Scholar
    • Export Citation
  • 11

    Peloquin CA, Nitta AT, Burman WJ, Brudney KF, Miranda-Massari JR, McGuinness ME, Berning SE, Gerena GT, 1996 . Low antituberculosis drug concentrations in patients with AIDS. Ann Pharmacother 30 :919– 923.

    • Search Google Scholar
    • Export Citation
  • 12

    Sahai J, Gallicano K, Swick L, Tailor S, Garber G, Seguin I, Oliveras L, Walker S, Rachlis A, Cameron DW, 1997 . Reduced plasma concentrations of antituberculosis drugs in patients with HIV infection. Ann Intern Med 127 :289– 293.

    • Search Google Scholar
    • Export Citation
  • 13

    Gurumurthy P, Ramachandran G, Kumar AKH, Rajasekaran S, Padmapriyadarsini C, Swaminathan S, Venkatesan P, Sekar L, Krishnarajasekhar OR, Paramesh P, 2004 . Malabsorption of rifampin and isoniazid in HIV-infected patients with and without tuberculosis. Clin Infect Dis 38 :280– 283.

    • Search Google Scholar
    • Export Citation
  • 14

    Tappero JW, Bradford WZ, Agerton TB, Hopewell P, Reingold AL, Lockman S, Oyewo A, Talbot A, Kenyon TA, Moeti TL, Moffat HJ, Peloquin CA, 2005 . Serum concentrations of anti-mycobacterial drugs in patients with tuberculosis in Botswana. Clin Infect Dis 41 :461– 469.

    • Search Google Scholar
    • Export Citation
  • 15

    McIlleron H, Wash P, Burger A, Norman J, Folb PI, Smith P, 2006 . Determinants of rifampin, isoniazid, pyrazinamide, and ethambutol pharmacokinetics in a cohort of tuberculosis patients. Antimicrob Agents Chemother 50 :1170– 1177.

    • Search Google Scholar
    • Export Citation
  • 16

    Kimerling M, Phillips P, Patterson P, Hall M, Robinson A, Dunlap N, 1998 . Low serum antimycobacterial drug levels in non-HIV-infected tuberculosis patients. Chest 113 :1178– 1183.

    • Search Google Scholar
    • Export Citation
  • 17

    van Crevel R, Alisjahbana B, De Lange WC, Borst F, Danusantoso H, Van Der Meer JW, Burger D, Nelwan RHH, 2002 . Low plasma concentrations of rifampicin in tuberculosis patients in Indonesia. Int J Tuberc Lung Dis 6 :497– 502.

    • Search Google Scholar
    • Export Citation
  • 18

    Choudhri SA, Hawken M, Gathua S, Mirnyri GO, Watkins W, Sahai J, Sitar DS, Aoki FY, Long R, 1997 . Pharmacokinetics of antmycobacterial drugs in patients with tuberculosis, AIDS, and diarrhea. Clin Infect Dis 25 :104– 111.

    • Search Google Scholar
    • Export Citation
  • 19

    Barboza MS Jr, Silva TM, Guerrant RL, Lima AAM, 1999 . Measurement of intestinal permeability using manitol and lactulose in children with diarrheal diseases. Braz J Med Biol Res 32 :1499– 1504.

    • Search Google Scholar
    • Export Citation
  • 20

    Instituto Brasileiro de Geografia e Estatística. Available at: http://www.ibge.gov.br/ . Accessed July 12, 2006 .

  • 21

    Ceará, Secretaria de Estado da Saúde, 2007 . Situação epidemiológica da tuberculose no Ceará. Informe Epidemiológica–fev. 2007. Available at: http://www.saude.ce.gov.br/internet/publicacoes/informestecnicos/informe_tuberculose_02_07.pdf . Accessed November 24, 2007.

  • 22

    Canetti G, Rist N, Grosset J, 1963 . Mesure de la sensibilité du bacille tuberculeux et drogues antibacillaires par la méthode dês proportions. Rev Tuberc Pneumol (Paris) 27 :217– 272.

    • Search Google Scholar
    • Export Citation
  • 23

    O’Connor PG, Schottenfeldt RD, 1998 . Patients with alcohol problems. N Engl J Med 338 :592– 600.

  • 24

    Fahn HJ, Wang LS, Kao SH, Chang SC, Huang MH, Wei YH, 1998 . Smoking- associated mitochondrial DNA mutations and lipid peroxidation in human lung tissues. Am J Respir Cell Mol Biol 19 :901– 909.

    • Search Google Scholar
    • Export Citation
  • 25

    World Health Organization (WHO), 1995 . Physical status: the use and interpretation of anthropometry. Geneva, Report of a WHO Expert Committee. Série de Informes Técnicos 854 :462 .

    • Search Google Scholar
    • Export Citation
  • 26

    Peloquin CA, 1997 . Using therapeutic drug monitoring to dose the antimycobacterial drug. Clin Chest Med 18 :79– 87.

  • 27

    Sociedade Brasileira de Pneumologia e Tisiologia, 2004 . II Consenso Brasileiro de tuberculose: diretrizes brasileiras para tuberculose 2004. J Bras Pneumol 30 (Suppl 1):57– 85.

    • Search Google Scholar
    • Export Citation
  • 28

    Peloquin CA, 2002 . Therapeutic drug monitoring in the treatment of tuberculosis. Drugs 62 :2169– 2183.

  • 29

    Acocella G, Pagani A, Marchetti M, Baroni GC, Nicolis FB, 1971 . Kinetic studies on rifampicin. I. Serum concentration analysis in subjects treated with different oral doses over a period of two weeks. Chemotherapy 16 :346– 370.

    • Search Google Scholar
    • Export Citation
  • 30

    Barroso EC, Sousa ALO, Barroso JB, Mota RMS, Oliveira ACM, Rodrigues JL, 2003 . Fatores de risco para tuberculose multirresistente adquirida. J Pneumol 29 :89– 97.

    • Search Google Scholar
    • Export Citation
  • 31

    Barroso EC, Barroso JB, Rodrigues JL, Mota RMS, Morais MFM, Campelo CL, 2003 . Fatores associados aos tratamentos inadequados em grupo de portadores de tuberculose multirresistente. J Pneumol 29 :350– 357.

    • Search Google Scholar
    • Export Citation
  • 32

    Um S-W, Lee SW, Know SY, Yoon HI, Park KU, Song J, Lee O-T, Lee J-H, 2007 . Low serum concentrations of anti-tuberculosis drugs and determinants of their serum levels. Int J Tuberc Lung Dis 11 :972– 978.

    • Search Google Scholar
    • Export Citation
  • 33

    Lima NL, Soares A, Mota RM, Monteiro HS, Guerrant RL, Lima AA, 2007 . Wasting and intestinal barrier function in children taking alanyl-glutamine-supplemented enteral formula. J Pediatr Gastroenterol Nutr 44 :365– 374.

    • Search Google Scholar
    • Export Citation
  • 34

    Walsh SV, Hopkins AM, Nusrat A, 2000 . Modulation of tight junction structure and function by cytokines. Adv Drug Deliv Rev 41 :303– 313.

    • Search Google Scholar
    • Export Citation
  • 35

    Fortes A, Pereira K, Antas PR, Franken CL, Dalcolmo M, Ribeiro-Carvalho MM, Cunha SK, Geluk A, Kritski A, Kolk A, Klatser P, Sarno EN, Ottenhoff THM, Sampaio EP, 2005 . Detection of in vitro interferon-gamma and serum tumor necrosis factor-alpha in multidrug-resistant tuberculosis pacients. Clin Exp Immunol 141 :541– 548.

    • Search Google Scholar
    • Export Citation
  • 36

    Castro AZ, Diaz-Bordalez BM, Oliveira EC, Garcia RC, Afiune JB, Paschoal IA, Santos LM, 2005 . Abnormal production of transforming growth factor beta and interferon gamma by peripheral blood cells of patients with multidrug-resistant tuberculosis in Brazil. J Infect 51 :318– 324.

    • Search Google Scholar
    • Export Citation
  • 37

    Ruslami R, Nijland HMJ, Alisjahbana B, Parwati I, Van Crevel R, Aarnoutse RE, 2007 . Pharmacokinetics and tolerability of a higher rifampin dose versus the standard dose in pulmonary tuberculosis patients. Antimicrob Agents Chemother 51 :2546– 2551.

    • Search Google Scholar
    • Export Citation
  • 38

    Singh S, Mariappan TT, Sankar R, Sarda N, Singh BA, 2002 . A critical review of the probable reasons for poor/variable bioavailability of rifampicin from antitubercular fixed-dose combination (FDC) products, and the likely solutions for the problem. Int J Pharm 228 :5– 17.

    • Search Google Scholar
    • Export Citation
  • 39

    Mariappan TT, Singh S, 2003 . Regional gastrointestinal permeability of rifampicin and isoniazida (alone and their combination) in the rat. Int J Tuberc Lung Dis 7 :797– 803.

    • Search Google Scholar
    • Export Citation
  • 40

    Toit LC, Pillay V, Danckwerts MP, 2006 . Tuberculosis chemotherapy: current drug delivery approches. Respir Res 7 :118 .

 
 
 

 

 
 
 

 

 

 

 

 

 

Serum Concentrations of Rifampin, Isoniazid, and Intestinal Absorption, Permeability in Patients with Multidrug Resistant Tuberculosis

View More View Less
  • 1 Clinical Research Unit and Institute of Biomedicine/Center for Global Health, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; Messejana’s Hospital, Secretary of Health, Ceará, Brazil; Central Laboratory, Secretary of Health, Ceará, Brazil; University of Florida, Gainesville, Florida; Center for Global Health, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia

This study evaluates the serum concentrations of rifampin (RMP), isoniazid (INH), and intestinal barrier function in patients with multidrug-resistant tuberculosis (MDR-TB), drug susceptible tuberculosis (DS-TB), and health volunteers (HC; controls). Peak serum concentrations of RMP were significantly lower in MDR-TB and DS-TB as compared with HC (odds ratio [OR] = 3.125, confidence interval [CI] [1.037–9.418] and OR = 4.025, CI [1.207–13.418], respectively). The INH peak serum concentration was not significantly different between MDR-TB versus DS-TB or DS-TB versus HC. The percent of mannitol excretion was significantly lower in the MDR-TB group compared with DS-TB (13.18 versus 16.03, analysis of covariance [ANCOVA], P = 0.0369) and compared with HC (13.18 versus 16.61, ANCOVA, P = 0.0291) the other study groups. These data suggested a lower peak serum concentration of RMP for both MDR-TB and DS-TB as compared with the HC group. The data also showed a lower intestinal area of absorption in patients with tuberculosis and even worse in MDR-TB.

Save