• 1

    Baird JK, 2005. Effectiveness of antimalarial drugs. N Engl J Med 352 :1565–1577.

  • 2

    Corbel V, N’Guessan R, Brengues C, Chandre F, Djongbenou L, Martin T, Akogbto M, Hougard JM, Rowland M, 2007. Multiple insecticide resistance mechanisms in Anopheles gambiae and Culex quinquefasciatus from Benin, West Africa. Acta Trop 101 :207–216.

    • Search Google Scholar
    • Export Citation
  • 3

    Ponlawat A, Scott JG, Harrington LC, 2005. Insecticide susceptibility of Aedes aegypti and Aedes albopictus across Thailand. J Med Entomol 42 :821–825.

    • Search Google Scholar
    • Export Citation
  • 4

    Scholte S-J, Ng’habi K, Kihonda J, Takken W, Paaijmans K, Abdullah S, Killeen GF, Knols BGJ, 2005. An entomopathic fungus for the control of adult African malaria mosquitoes. Science 308 :1641–1642.

    • Search Google Scholar
    • Export Citation
  • 5

    Scholte S-J, Takken W, Knols BGJ, 2007. Infection of adult Aedes aegypti and Ae. albopictus mosquitoes with the entomopathogenic fungus Metarhizium anisopliae. Acta Trop 102 :151–158.

    • Search Google Scholar
    • Export Citation
  • 6

    Blanford S, Chan BHK, Jenkins N, Sim D, Turner RJ, Read AF, Thomas MB, 2005. Fungal pathogen reduces potential for malaria transmission. Science 308 :1638–1641.

    • Search Google Scholar
    • Export Citation
  • 7

    Thomas MB, Read AF, 2007. Can fungal biopesticides control malaria? Nat Rev Microbiol 5 :377–383.

  • 8

    Kanzok SM, Jacobs-Lorena M, 2006. Entomopathogenic fungu as biological insecticides to control malaria. Trends Parasitol 22 :49–51.

  • 9

    Ward MDW, Selgrade MK, Hutchinson OC, Cunningham AA, 2005. Benefits and risks of malaria control. Science 310 :49–51.

  • 10

    Thomas MB, Wood SN, Langewald J, Lomer CJ, 1997. Persistence of Metarhizium flavoviride and consequences for biological control of grasshoppers and locusts. Pestic Sci 49 :47–55.

    • Search Google Scholar
    • Export Citation
  • 11

    Melnikova EA, Murza VA, 1980. Investigations of the safety of industrial strains of microorganisms and microbial insecticides. J Hyg Epidemiol Microbiol Immunol 24 :425–431.

    • Search Google Scholar
    • Export Citation
  • 12

    Strasser H, Vey A, Butt TM, 2000. Are there any risks in using entomopathogenic fungi for pest control, with particular reference to the bioactive metabolites of Metarhizium, Tolypocladium and Beauveria species? Biocontrol Sci Technol 10 :717–735.

    • Search Google Scholar
    • Export Citation
  • 13

    Goettel MS, Hajek AE, Siegel JP, Evans HC, 2001. Safety of fungal biocontrol agents. Butt TM, Jackson C, Magan N, eds. Fungi as Biocontrol Agents: Progress, Problems and Potential. Wallingford: CAB International, 347–376.

  • 14

    Zimmermann G, 2007a. Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Sci Technol 17 :553–596.

    • Search Google Scholar
    • Export Citation
  • 15

    Zimmermann G, 2007b. Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Sci Technol 17 :879–920.

  • 16

    Gürcan Ş, Tuğrul HM, Yörük Y, Özer B, Tatman-Otkun M, Otkun M, 2006. First case report of empyema caused by Beauveria bassiana. Mycoses 49 :246–248.

    • Search Google Scholar
    • Export Citation
  • 17

    Henke MO, de Hoog GS, Gross U, Zimmermann G, Kraemer D, Weig M, 2002. Human deep tissue infection with an entomopathogenic Beauveria species. J Clin Microbiol 40 :2698–2702.

    • Search Google Scholar
    • Export Citation
  • 18

    Tucker DL, Beresford CH, Sigler L, Rogers K, 2004. Disseminated Beauveria bassiana infection in a patient with acute lymphoblastic leukemia. J Clin Microbiol 42 :5412–5414.

    • Search Google Scholar
    • Export Citation
  • 19

    Burgner D, Eagles G, Burgess M, Procopis P, Rogers M, Muir D, Pritchard R, Hocking A, Priest M, 1998. Disseminated invasive infection due to Metarhizium anisopliae in an immunocompromised child. J Clin Microbiol 36 :1146–1150.

    • Search Google Scholar
    • Export Citation
  • 20

    Jani BR, Rinaldi MG, Reinhart WJ, 2001. An unusual case of fungal keratitis; Metarhizium anisopliae. Cornea 20 :765–768.

  • 21

    Osorio S, de la Cámara R, Monteserin MC, Granados R, Oña F, Rodriguez-Tudela JL, Cuenca-Estrella M, 2007. Recurrent disseminated skin legions due to Metarhizium anisopliae in an adult patient with acute myelogenous leukemia. J Clin Microbiol 45 :651–655.

    • Search Google Scholar
    • Export Citation
  • 22

    Sachs SW, Baum J, Mies C, 1985. Beauveria bassiana keratitis. Br J Ophthalmol 69 :548–550.

  • 23

    Kisla TA, Cu-Unjieng A, Sigler L, Sugar J, 2000. Medical management of Beauveria bassiana keratitis. Cornea 19 :405–406.

  • 24

    Marsh RA, Lucky AW, Walsh TJ, Pacheco MC, Rinaldi MG, Mailler-Savage E, Puel A, Casanova J-L, Bleesing JJ, Filippi M-D, Willams DA, Daines MO, 2008. Cutaneous infection with Metarhizium anisopliae in a patient with hypohidrotic ectodermal dysplasia and immune deficiency. Pediatr Infect Dis J 27 :1–2.

    • Search Google Scholar
    • Export Citation
  • 25

    Tu EY, Park AJ, 2007. Recalcitrant Beauveria bassiana keratitis: confocal microscopy findings and treatment with posaconazole (Noxafil). Cornea 26 :1008–1010.

    • Search Google Scholar
    • Export Citation
  • 26

    de Garcia C, Arboleda ML, Barraquer F, Grose E, 1997. Fungal keratitis caused by Metarhizium anisopliae var. anisopliae. Med Mycol 35 :361–363.

    • Search Google Scholar
    • Export Citation
  • 27

    Revankar SG, Sutton DA, Sanche SE, Rao J, Zervos M, Dashti F, Rinaldi MG, 1999. Metarhizium anisopliae as a cause of sinusitis in immunocompetent hosts. J Clin Microbiol 37 :195–198.

    • Search Google Scholar
    • Export Citation
  • 28

    Fréour P, Lahourcade M, Chomy P, 1966. Une mycose nouvelle: etude clinique et mycologique d’une localisation pulmonaire de Beauveria. Société Médicale de Hôpitaux de Paris 3 :197–206.

    • Search Google Scholar
    • Export Citation
  • 29

    Drouhet E, Dupont B, 1980. Chronic mucocutaneous candidosis and other superficial and systemic mycoses successfully treated with ketoconazole. Rev Infect Dis 2 :606–619.

    • Search Google Scholar
    • Export Citation
  • 30

    Crameri R, Blaser K, 2002. Allergy and immunity to fungal infections and colonization. Eur Respir J 19 :151–157.

  • 31

    Romani L, 2004. Immunity to fungal infections. Nat Rev Immunol 4 :11–23.

  • 32

    Ward MDW, Madison SL, Andrews DL, Sailstad DM, Gavett SH, Selgrade MJK, 2000. Comparison of respiratory responses to Metarhizium anisopliae extract using two different sensitization protocols. Toxicology 147 :133–145.

    • Search Google Scholar
    • Export Citation
  • 33

    Instanes C, Ward MDW, Hetland G, 2006. The fungal biopesticide Metarhizium anisopliae has an adjuvant effect on the allergice response to ovalbumin in mice. Toxicol Lett 161 :219–225.

    • Search Google Scholar
    • Export Citation
  • 34

    Lacey J, Crook B, 1988. Fungal and actinomycete spores as pollutants of the workplace and occupational allergens. Ann Occup Hyg 32 :515–533.

    • Search Google Scholar
    • Export Citation
  • 35

    Ellis ME, Al-Abdely H, Sandridge A, Greer W, Ventura W, 2001. Fungal endocarditis: evidence in the world literature, 1965–1995. Clin Infect Dis 32 :50–62.

    • Search Google Scholar
    • Export Citation
  • 36

    Simmons RB, Price DL, Noble JA, Crow SA, Ahearn DG, 1997. Fungal colonization of air filters from hospitals. Am Ind Hyg Assoc J 58 :900–904.

    • Search Google Scholar
    • Export Citation
  • 37

    Sigler L, Flis A, 1998. Catalogue of the University of Alberta Microfungus Collection and Herbarium (UAMH). Edmonton: University of Alberta.

  • 38

    Carmichael JW, 1961. Fungi from Alberta rodents. Mycopathol Mycol Appl 14 :129–135.

  • 39

    Thomas MB, Blanford S, Jenkins NE, Killeen GF, Knols BGJ, Read AF, Scholte E-J, Takken W, 2005. Benefits and risks in malaria control. Science 310 :49–51.

    • Search Google Scholar
    • Export Citation
  • 40

    Bateman RP, Carey M, Moore D, Prior C, 1993. The enhanced infectivity of Metarhizium flavoviride in oil formulations to desert locusts at low humidities. Ann Appl Biol 122 :145–152.

    • Search Google Scholar
    • Export Citation
  • 41

    Khan NN, Wilson BL, 2003. An environmental assessment of mold concentrations and potential mycotoxin exposures in the greater southeast Texas area. J Environ Sci Health Part A A38 :2759–2772.

    • Search Google Scholar
    • Export Citation
  • 42

    WHO, 2006. Indoor Residual Spraying. Use of indoor residual spraying for scaling up global malaria control and elimination. WHO/HTM/MAL/2006.1112.

  • 43

    Hancock PA, Thomas MB, Godray HCJ, 2009. An age-structured model to evaluate the potential of novel malaria-control interventions: a case study of fungal biopesticide sprays. Proc R Soc 276 :71–80.

    • Search Google Scholar
    • Export Citation
  • 44

    Garrett MH, Hooper BM, Cole FM, Hooper MA, 1997. Airborne fungal spores in 80 homes in the Latrobe Valley, Australia: levels, seasonality and indoor-outdoor relationship. Aerobiologia 13 :121–126.

    • Search Google Scholar
    • Export Citation
  • 45

    Li D-W, Kenrick B, 1995. A year-round comparison of fungal spores in indoor and outdoor air. Mycologia 87 :190–195.

  • 46

    Goh IO, Viswanathan S, Huang Y, 2000. Airborne bacteria and fungal spores in the indoor environment: a case study in Singapore. Acta Biotechnol 20 :67–73.

    • Search Google Scholar
    • Export Citation
  • 47

    Adhikari A, Sen MM, Gupta-Bhattacharya S, Chanda S, 2004. Volumetric assessment of airborne fungi in two sections of a rural indoor cattle shed. Environ Int 29 :1071–1078.

    • Search Google Scholar
    • Export Citation
  • 48

    Adhikari A, Bhattacharya S, Chanda S, 1996. Aerobiology and allergenicity of indoor fungal spores in Calcutta during summer months. Indian J Allergy Appl Immunol 10 :11–19.

    • Search Google Scholar
    • Export Citation
  • 49

    Atkinson RW, Strachan DP, Anderson R, Hajat S, Emberlin J, 2006. Temporal associations between daily counts of fungal spores and asthma exacerbations. Occup Environ Med 63 :580–590.

    • Search Google Scholar
    • Export Citation
  • 50

    Neas LM, Dockery DW, Burge H, Koutrakis P, Speizer FE, 1996. Fungus spores, air pollutants, and other determinants of peak expiratory flow rate in children. Am J Epidemiol 143 :797–807.

    • Search Google Scholar
    • Export Citation
  • 51

    Bruce N, Perez-Padilla R, Albalak R, 2000. Indoor air pollution in developing countries: a major environmental and public health challenge. Bull World Health Organ 78 :1078–1092.

    • Search Google Scholar
    • Export Citation
  • 52

    Rylander R, 1997. Investigations of the relationship between disease and airborne (1→3)-β-D-glucan in buildings. Mediators Inflamm 6 :275–277.

    • Search Google Scholar
    • Export Citation
  • 53

    Douwes J, 2005. (1→3)-β-D-glucans and respiratory health: a review of the scientific evidence. Indoor Air 15 :160–169.

  • 54

    Green BJ, Sercombe JK, Tovey ER, 2005. Fungal fragments and undocumented conidia function as new aeroallergen sources. J Allergy Clin Immunol 115 :1043–1048.

    • Search Google Scholar
    • Export Citation
  • 55

    Górny RL, Reponen T, Willeke K, Schmechel D, Robine E, Boissier M, Grinshpun SS, 2002. Fungal fragments as indoor air biocontaminants. Appl Environ Microbiol 68 :3522–3531.

    • Search Google Scholar
    • Export Citation
  • 56

    Farenhorst M, Farina D, Scholte E-J, Takken W, Hunt RH, Coetzee M, Knols BGJ, 2008. African water storage pots for the delivery of the entomopathogenic fungus Metarhizium anisopliae to the malaria vectors Anopheles gambiae s.s. and Anopheles funestus. Am J Trop Med Hyg 78 :910–916.

    • Search Google Scholar
    • Export Citation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Spore Persistence and Likelihood of Aeroallergenicity of Entomopathogenic Fungi Used for Mosquito Control

View More View Less
  • 1 Entomology Division, Australian Commonwealth Science and Industry Research Organization, Canberra, Australian Capital Territory, Australia; Center for Infectious Disease Dynamics and Department of Entomology, Pennsylvania State University, University Park, Pennsylvania
Restricted access

Entomopathogenic fungi, such as Metarhizium anisopliae and Beauveria bassiana, are being researched as alternatives to chemical adulticides to control mosquito vectors of malaria and dengue. Two cited concerns of fungal control include conidial viability and risks fungal entomopathogens pose to human health. We measured spore viability of 10 fungal isolates over 26 weeks and found a range of persistence. Three B. bassiana isolates maintained ≥ 50% viability 14 weeks after application. No M. anisopliae isolate persisted longer than 1 week. To help assess risk of conidia as potential human allergens, we measured airborne conidia in enclosed environments after simulated biopesticide treatment of M. anisopliae. Conidia were detectable immediately after treatment, with concentrations of ~7000/m3, decreasing over 48 hours to 500 conidia/m3. At most, Metarhizium conidia comprised 2% of total visible particulate matter, falling to 0.1% by 2 days. The implications for viability of biological control of adult mosquitoes are discussed.

Save