• 1

    Garcia HH, Gonzalez AE, Evans CA, Gilman RH, 2003. Taenia solium cysticercosis. Lancet 362 :547–556.

  • 2

    Schantz PM, 1989. Surveillance and control programs for cestode diseases. Miller MJ, Love EJ, eds. Parasitic Diseases: Treatment and Control. Boca Raton, FL: CRC Press, Inc., 275–290.

  • 3

    White AC, Garcia HH, 1999. Recent developments in the epidemiology, diagnosis, treatment, and prevention of neurocysticercosis. Curr Infect Dis Rep 1 :434–440.

    • Search Google Scholar
    • Export Citation
  • 4

    Garcia HH, Gilman R, Martinez M, Tsang VC, Pilcher JB, Herrera G, Diaz F, Alvarado M, Miranda E, 1993. Cysticercosis as a major cause of epilepsy in Peru. The Cysticercosis Working Group in Peru (CWG). Lancet 341 :197–200.

    • Search Google Scholar
    • Export Citation
  • 5

    Tsang VC, Brand JA, Boyer AE, 1989. An enzyme-linked immunoelectrotransfer blot assay and glycoprotein antigens for diagnosing human cysticercosis (Taenia solium). J Infect Dis 159 :50–59.

    • Search Google Scholar
    • Export Citation
  • 6

    Arruda GC, da Silva AD, Quagliato EM, Maretti MA, Rossi CL, 2005. Evaluation of Taenia solium and Taenia crassiceps cystic-ercal antigens for the serodiagnosis of neurocysticercosis. Trop Med Int Health 10 :1005–1012.

    • Search Google Scholar
    • Export Citation
  • 7

    Bueno EC, Scheel CM, Vaz AJ, Machado LR, Livramento JA, Takayanagui OM, Tsang VC, Hancock K, 2005. Application of synthetic 8-kD and recombinant GP50 antigens in the diagnosis of neurocysticercosis by enzyme-linked immunosorbent assay. Am J Trop Med Hyg 72 :278–283.

    • Search Google Scholar
    • Export Citation
  • 8

    Dorny P, Brandt J, Zoli A, Geerts S, 2003. Immunodiagnostic tools for human and porcine cysticercosis. Acta Trop 87 :79–86.

  • 9

    Espindola NM, Iha AH, Fernandes I, Takayanagui OM, Machado Ldos R, Livramento JA, Mendes Maia AA, Peralta JM, Vaz AJ, 2005. Cysticercosis immunodiagnosis using 18-and 14-kilodalton proteins from Taenia crassiceps cysticercus antigens obtained by immunoaffinity chromatography. J Clin Microbiol 43 :3178–3184.

    • Search Google Scholar
    • Export Citation
  • 10

    Ferrer E, Gonzalez LM, Martinez-Escribano JA, Gonzalez-Barderas ME, Cortez MM, Davila I, Harrison LJ, Parkhouse RM, Garate T, 2007. Evaluation of recombinant HP6-Tsag, an 18 kDa Taenia saginata oncospheral adhesion protein, for the diagnosis of cysticercosis. Parasitol Res 101 :517–525.

    • Search Google Scholar
    • Export Citation
  • 11

    Fleury A, Beltran C, Ferrer E, Garate T, Harrison LJ, Parkhouse RM, Garcia E, Fragoso G, Costa-Cruz J, Biondi G, Agapejev S, Sciutto E, 2003. Application of synthetic peptides to the diagnosis of neurocysticercosis. Trop Med Int Health 8 :1124–1130.

    • Search Google Scholar
    • Export Citation
  • 12

    Hancock K, Khan A, Williams FB, Yushak ML, Pattabhi S, Noh J, Tsang VC, 2003. Characterization of the 8-kilodalton antigens of Taenia solium metacestodes and evaluation of their use in an enzyme-linked immunosorbent assay for serodiagnosis. J Clin Microbiol 41 :2577–2586.

    • Search Google Scholar
    • Export Citation
  • 13

    Hernandez M, Beltran C, Garcia E, Fragoso G, Gevorkian G, Fleury A, Parkhouse M, Harrison L, Sotelo J, Sciutto E, 2000. Cysticercosis: towards the design of a diagnostic kit based on synthetic peptides. Immunol Lett 71 :13–17.

    • Search Google Scholar
    • Export Citation
  • 14

    Sako Y, Nakao M, Nakaya K, Yamasaki H, Ito A, 2006. Recombinant antigens for serodiagnosis of cysticercosis and echinococcosis. Parasitol Int 55 (Suppl):S69–S73.

    • Search Google Scholar
    • Export Citation
  • 15

    Scheel CM, Khan A, Hancock K, Garcia HH, Gonzalez AE, Gilman RH, Tsang VC, 2005. Serodiagnosis of neurocysticercosis using synthetic 8-kD proteins: comparison of assay formats. Am J Trop Med Hyg 73 :771–776.

    • Search Google Scholar
    • Export Citation
  • 16

    Harmsen MM, Cornelissen JB, Buijs HE, Boersma WJ, Jeurissen SH, van Milligen FJ, 2004. Identification of a novel Fasciola hepatica cathepsin L protease containing protective epitopes within the propeptide. Int J Parasitol 34 :675–682.

    • Search Google Scholar
    • Export Citation
  • 17

    Tantrawatpan C, Maleewong W, Wongkham C, Wongkham S, Intapan PM, Nakashima K, 2005. Serodiagnosis of human fascioliasis by a cystatin capture enzyme-linked immunosorbent assay with recombinant Fasciola gigantica cathepsin L antigen. Am J Trop Med Hyg 72 :82–86.

    • Search Google Scholar
    • Export Citation
  • 18

    Cornelissen JB, Gaasenbeek CP, Boersma W, Borgsteede FH, van Milligen FJ, 1999. Use of a pre-selected epitope of cathepsin-L1 in a highly specific peptide-based immunoassay for the diagnosis of Fasciola hepatica infections in cattle. Int J Parasitol 29 :685–696.

    • Search Google Scholar
    • Export Citation
  • 19

    Collins PR, Stack CM, O’Neill SM, Doyle S, Ryan T, Brennan GP, Mousley A, Stewart M, Maule AG, Dalton JP, Donnelly S, 2004. Cathepsin L1, the major protease involved in liver fluke (Fasciola hepatica) virulence: propetide cleavage sites and auto-activation of the zymogen secreted from gastrodermal cells. J Biol Chem 279 :17038–17046.

    • Search Google Scholar
    • Export Citation
  • 20

    Cordova M, Herrera P, Nopo L, Bellatin J, Naquira C, Guerra H, Espinoza JR, 1997. Fasciola hepatica cysteine proteinases: immunodominant antigens in human fascioliasis. Am J Trop Med Hyg 57 :660–666.

    • Search Google Scholar
    • Export Citation
  • 21

    Cordova M, Reategui L, Espinoza JR, 1999. Immunodiagnosis of human fascioliasis with Fasciola hepatica cysteine proteinases. Trans R Soc Trop Med Hyg 93 :54–57.

    • Search Google Scholar
    • Export Citation
  • 22

    Zimic MJ, Infantes J, Lopez C, Velasquez J, Farfan M, Pajuelo M, Sheen P, Verastegui M, Gonzalez A, Garcia HH, Gilman R, 2007. Comparison of the peptidase activity in the oncospheres excretory/secretory products of Taenia solium and Taenia saginata. J Parasitol 93 :727–734.

    • Search Google Scholar
    • Export Citation
  • 23

    Gonzalez AE, Cama V, Gilman RH, Tsang VC, Pilcher JB, Chavera A, Castro M, Montenegro T, Verastegui M, Miranda E, 1990. Prevalence and comparison of serologic assays, necropsy, and tongue examination for the diagnosis of porcine cysticercosis in Peru. Am J Trop Med Hyg 43 :194–199.

    • Search Google Scholar
    • Export Citation
  • 24

    Werle B, Staib A, Julke B, Ebert W, Zladoidsky P, Sekirnik A, Kos J, Spiess E, 1999. Fluorometric microassays for the determination of cathepsin L and cathepsin S activities in tissue extracts. Biol Chem 380 :1109–1116.

    • Search Google Scholar
    • Export Citation
  • 25

    Sriveny D, Raina OK, Yadav SC, Chandra D, Jayraw AK, Singh M, Velusamy R, Singh BP, 2006. Cathepsin L cysteine proteinase in the diagnosis of bovine Fasciola gigantica infection. Vet Parasitol 135 :25–31.

    • Search Google Scholar
    • Export Citation
  • 26

    Kaewpitoon N, Laha T, Kaewkes S, Yongvanit P, Brindley PJ, Loukas A, Sripa B, 2008. Characterization of cysteine proteases from the carcinogenic liver fluke, Opisthorchis viverrini. Parasitol Res 102 :757–764.

    • Search Google Scholar
    • Export Citation
  • 27

    Schirmeister T, Klockow A, 2003. Cysteine protease inhibitors containing small rings. Mini Rev Med Chem 3 :585–596.

  • 28

    Matsumoto K, Mizoue K, Kitamura K, Tse WC, Huber CP, Ishida T, 1999. Structural basis of inhibition of cysteine proteases by E-64 and its derivatives. Biopolymers 51 :99–107.

    • Search Google Scholar
    • Export Citation
  • 29

    Youden WJ, 1950. Index for rating diagnostic tests. Cancer 3 :32–35.

  • 30

    Baig S, Damian RT, Morales-Montor J, Olecki P, Talhouk J, Hashmey R, White AC Jr, 2005. Characterization of excretory/ secretory endopeptidase and metallo-aminopeptidases from Taenia crassiceps metacestodes. J Parasitol 91 :983–987.

    • Search Google Scholar
    • Export Citation
  • 31

    Baig S, Damian RT, Molinari JL, Tato P, Morales-Montor J, Welch M, Talhouk J, Hashmeys R, White AC Jr, 2005. Purification and characterization of a metacestode cysteine proteinase from Taenia solium involved in the breakdown of human IgG. Parasitology 131 :411–416.

    • Search Google Scholar
    • Export Citation
  • 32

    Li AH, Moon SU, Park YK, Na BK, Hwang MG, Oh CM, Cho SH, Kong Y, Kim TS, Chung PR, 2006. Identification and characterization of a cathepsin L-like cysteine protease from Taenia solium metacestode. Vet Parasitol 141 :251–259.

    • Search Google Scholar
    • Export Citation
  • 33

    Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ, 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25 :3389–3402.

    • Search Google Scholar
    • Export Citation
  • 34

    Parkhouse RM, Harrison LJ, 1987. Cyst fluid and surface associated glycoprotein antigens of Taenia sp. metacestodes. Parasite Immunol 9 :263–268.

    • Search Google Scholar
    • Export Citation
 
 
 
 

 

 
 
 

 

 

 

 

 

 

Utility of a Protein Fraction with Cathepsin L-Like Activity Purified from Cysticercus Fluid of Taenia solium in the Diagnosis of Human Cysticercosis

View More View Less
  • 1 Laboratorios de Investigación y Desarrollo. Facultad de Ciencias, Universidad Peruana Cayetano Heredia, Lima, Perú; Cysticercosis Unit, Instituto Nacional de Ciencias Neurológicas, Lima, Perú; Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla California; School of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Perú; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland

Neurocysticercosis, an endemic parasitic disease in most developing countries, is caused by Taenia solium and compromises the human central nervous system. Cathepsin L-like proteases are secreted by several parasites including T. solium and constitute important antigens for immunodiagnostics. A protein fraction with cathepsin L-like activity was purified from the cysticercus fluid by size exclusion and ion exchange chromatography. Cathepsin L-like activity was measured fluorometrically by detecting the hydrolysis of the fluorogenic substrate Z-Phe-Arg-AMC. The purified protein fraction included antigens of 53 and 25 kD that were tested in a Western immunoblot and in an enzyme-linked immunosorbent assay (ELISA) for detection of human cysticercosis. The sensitivity of the Western immunoblot was 96% for patients infected with multiple cysts and 78% for patients with a single cyst. Specificity was 98%. The sensitivity of the ELISA was 98% in patients with multiple cysts and 84% in patients with a single cyst. Specificity was 92.7%.

Save