• 1

    Gubler DJ, 2002. Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol 10 :100–103.

    • Search Google Scholar
    • Export Citation
  • 2

    Gubler DJ, 2004. The changing epidemiology of yellow fever and dengue, 1900 to 2003: full circle? Comp Immunol Microbiol Infect Dis 27 :319–330.

    • Search Google Scholar
    • Export Citation
  • 3

    Pages F, Corbel V, Paupy C, 2006. Aedes albopictus: chronical of a spreading vector. Med Trop 66 :226–228.

  • 4

    Vazeille M, Moutailler S, Coudrier D, Rousseaux C, Khun H, Huerre M, Thiria J, Dehecq JS, Fontenille D, Schuffenecker I, Despres P, Failloux AB, 2007. Two chikungunya isolates from the outbreak of La Reunion (Indian Ocean) exhibit different patterns of infection in the mosquito, Aedes albopictus. PLoS One 2 :e1168.

    • Search Google Scholar
    • Export Citation
  • 5

    World Health Organization, 2006. Report of the Scientific Working Group on Dengue. Document WHO/TDR/SWG/08. Geneva: World Health Organization.

  • 6

    Chaud P, Yebakima A, 2006. Programme de surveillance, d’alerte et de gestion des épidémies de dengue (PSAGE Dengue) en Martinique. Rapport InVS: 65.

    • Search Google Scholar
    • Export Citation
  • 7

    Point Epidémiologique, 2008. Surveillance de la dengue, Bilan de l’épidemie 2007/2008. PEP 2008.3: 2.

  • 8

    Yebakima A, Failloux AB, 2002. Compétence vectorielle et génétique des populations d’Aedes aegypti à la Martinique. Rapport Intermediaire Centre de Démoustication de la Martinique.

  • 9

    Gubler DJ, 1998. The global pandemic of dengue/dengue haemorrhagic fever: current status and prospects for the future. Ann Acad Med Singapore 27 :227–234.

    • Search Google Scholar
    • Export Citation
  • 10

    Corriveau R, Philippon B, Yebakima A, 2003. Le Dengue dans les Départements Français d’Amérique. Comment Optimiser la Lutte Contre cette Maladie? IRD Édition. Paris: Expertise Collégiale.

  • 11

    Yebakima A, 1991. Recherche sur Aedes aegypti et Culex pipiens en Martinique. Ecologie Larvaire, Résistance aux Insecticides, Application à la Lutte. Thèse de Doctorat d’Etat es Sciences, Université Montpellier II: 210.

  • 12

    World Health Organization, 2006. Pesticides and their Application for the Control of Vectors and Pests of Public Health Importance. Document WHO/CDS/WHOPES/GCDPP/2006.1. Geneva: World Health Organization.

  • 13

    Rawlins SC, 1998. Spatial distribution of insecticide resistance in Caribbean populations of Aedes aegypti and its significance. Rev Panam Salud Publica 4 :243–251.

    • Search Google Scholar
    • Export Citation
  • 14

    Rodriguez MM, Bisset JA, Fernandez D, 2007. Levels of insecticide resistance and resistance mechanisms in Aedes aegypti from some Latin American countries. J Am Mosq Control Assoc 23 :420–429.

    • Search Google Scholar
    • Export Citation
  • 15

    Hemingway J, Hawkes NJ, McCarroll L, Ranson H, 2004. The molecular basis of insecticide resistance in mosquitoes. Insect Biochem Mol Biol 34 :653–665.

    • Search Google Scholar
    • Export Citation
  • 16

    Brengues C, Hawkes NJ, Chandre F, McCarroll L, Duchon S, Guillet P, Manguin S, Morgan JC, Hemingway J, 2003. Pyrethroid and DDT cross-resistance in Aedes aegypti is correlated with novel mutations in the voltage-gated sodium channel gene. Med Vet Entomol 17 :87–94.

    • Search Google Scholar
    • Export Citation
  • 17

    Saavedra-Rodriguez K, Urdaneta-Marquez L, Rajatileka S, Moulton M, Flores AE, Fernandez-Salas I, Bisset J, Rodriguez M, McCall PJ, Donnelly MJ, Ranson H, Hemingway J, Black WC IV, 2007. A mutation in the voltage-gated sodium channel gene associated with pyrethroid resistance in Latin American Aedes aegypti. Insect Mol Biol 16 :785–798.

    • Search Google Scholar
    • Export Citation
  • 18

    Bisset J, Rodriguez M, Molina D, Díaz C, Soca L, 2002. Esterasas elevadas como mecanismo de resistencia a insecticidas organofosforados en cepas de Aedes aegypti. Rev Cubana Med Trop 53 :37–43.

    • Search Google Scholar
    • Export Citation
  • 19

    Rodriguez MM, Bisset J, Ruiz M, Soca A, 2002. Cross-resistance to pyrethroid and organophosphorus insecticides induced by selection with temephos in Aedes aegypti (Diptera: Culicidae) from Cuba. J Med Entomol 39 :882–888.

    • Search Google Scholar
    • Export Citation
  • 20

    Macoris M, Andrighetti MT, Takaku L, Glasser CM, Garbeloto VC, Bracco JE, 2003. Resistance of Aedes aegypti from the state of Sao Paulo, Brazil, to organophosphates insecticides. Mem Inst Oswaldo Cruz 98 :703–708.

    • Search Google Scholar
    • Export Citation
  • 21

    Rosine J, 1999. Resistance d’Aedes aegypti et de Culex pipiens quinquefasciatus aux Insecticide Organophosphorés, Biologique et aux Pyréthrinoides en Martinique et en Guadeloupe. Diplôme d’Etudes Approfondies. Paris: Université Pierre et Marie Curie (Paris VI): 51.

  • 22

    World Health Organization, 2001. Guidelines for Assessing the Efficacy of Insecticidal Space Sprays for Control of the Dengue Vector Aedes aegypti. Document WHO/CDS/CPE/PVC/2001.1. Geneva: World Health Organization.

  • 23

    World Health Organization, 2005. Guidelines for Testing Mosquito Adulticides for Indoor Residual Spraying and Treatment of Mosquito Nets. Document WHO/CDS/NTD/WHOPES/GCDPP/2006.3. Geneva: World Health Organization.

  • 24

    Bunner BL, Posa FG, Dobson SE, Broski FH, Boobar LR, 1989. Aerosol penetration relative to sentinel cage configuration and orientation. J Am Mosq Control Assoc 5 :547–551.

    • Search Google Scholar
    • Export Citation
  • 25

    World Health Organization, 1996. Report of the WHO Informal Consultation on the “Evaluation and Testing of Insecticides.” Document WHO/CDT/WHOPES/IC/96.1. Geneva: World Health Organization.

  • 26

    World Health Organization, 2003. Space Spray Application of Insecticides for Vector and Public Health Pest Control. A Practitioner’s Guide. Document WHO/CDS/WHOPES/GCDPP/2003.5. Geneva: World Health Organization.

  • 27

    Abbott W, 1925. A method of computing the effectiveness of an insecticide. J Econ Entomol 18 :265–267.

  • 28

    Raymond M, Prato G, Ratsira D, 1997. Probit and Logit Analysis Program Version 2.0, Praxème: R&D. Montepellier, France: Centre National de la Recherche Scientifique.

  • 29

    Milliken GA, Johnson DE, 1992. Analysis of Messy Data. Volume I: Designed Experiments. London: Chapman & Hall.

  • 30

    JMP, Version 5.1.2, 1989–2004. Cary, NC: SAS Institute Inc.

  • 31

    Yebakima A, Charles C, Mousson L, Vazeille M, Yp-Tcha MM, Failloux AB, 2004. Genetic heterogeneity of the dengue vector Aedes aegypti in Martinique. Trop Med Int Health 9 :582–587.

    • Search Google Scholar
    • Export Citation
  • 32

    Mouchet J, Carnevale P, Julvez J, Manguin S, Richard-Lenoble D, Sircoulon J, 2004. Biodiversité du Paludisme dans le Monde. Paris: John Libbey Eurotext.

  • 33

    Ham C, Meisch M, Meek C, 1999. Efficacy of Dibrom, Trumpet, and Scourge against four mosquito species in Louisiana. J Am Mosq Control Assoc 15 :433–436.

    • Search Google Scholar
    • Export Citation
  • 34

    World Health Organization, 2000. Repellents and Toxicants for Personal Protection. Document WHO/CDS/WHOPES/GCDPP/2000.5. Geneva: World Health Organization.

  • 35

    Jokanovic M, 2001. Biotransformation of organophosphorus compounds. Toxicology 166 :139–160.

  • 36

    Gubler DJ, Kuno G, 1997. Dengue and Dengue Hemorrhagic Fever. New York: CAB International Press.

  • 37

    Gratz NG, 1991. Emergency control of Aedes aegypti as a disease vector in urban areas. J Am Mosq Control Assoc 7 :353–365.

  • 38

    Castle T, Amador M, Rawlins S, Figueroa JP, Reiter P, 1999. Absence of impact of aerial malathion treatment on Aedes aegypti during a dengue outbreak in Kingston, Jamaica. Rev Panam Salud Publica 5 :100–105.

    • Search Google Scholar
    • Export Citation
  • 39

    Strode C, Wondji CS, David JP, Hawkes NJ, Lumjuan N, Nelson DR, Drane DR, Karunaratne SH, Hemingway J, Black WC IV, Ranson H, 2008. Genomic analysis of detoxification genes in the mosquito Aedes aegypti. Insect Biochem Mol Biol 38 :113–123.

    • Search Google Scholar
    • Export Citation
  • 40

    Bisset J, Rodriguez MM, Fernandez D, 2006. Selection of insensitive acetylcholinesterase as a resistance mechanism in Aedes aegypti (Diptera: Culicidae) from Santiago de Cuba. J Med Entomol 43 :1185–1189.

    • Search Google Scholar
    • Export Citation
  • 41

    Darriet F, Corbel V, 2006. Laboratory evaluation of pyriproxyfen and spinosad, alone and in combination, against Aedes aegypti larvae. J Med Entomol 43 :1190–1194.

    • Search Google Scholar
    • Export Citation
  • 42

    Chung YK, Lam-Phua SG, Chua YT, Yatiman R, 2001. Evaluation of biological and chemical insecticide mixture against Aedes aegypti larvae and adults by thermal fogging in Singapore. Med Vet Entomol 15 :321–327.

    • Search Google Scholar
    • Export Citation
  • 43

    Perich MJ, Kardec A, Braga IA, Portal IF, Burge R, Zeichner BC, Brogdon WA, Wirtz RA, 2003. Field evaluation of a lethal ovitrap against dengue vectors in Brazil. Med Vet Entomol 17 :205–210.

    • Search Google Scholar
    • Export Citation
  • 44

    Darriet F, Corbel V, 2008. Influence des engrais de type NPK sur l’oviposition d’Aedes aegypti. Parasite 15 :89–92.

  • 45

    Benedict MQ, Robinson AS, 2003. The first releases of transgenic mosquitoes: an argument for the sterile insect technique. Trends Parasitol 19 :349–355.

    • Search Google Scholar
    • Export Citation
  • 46

    Scholte EJ, Takken W, Knols BG, 2007. Infection of adult Aedes aegypti and Ae. albopictus mosquitoes with the entomopathogenic fungus Metarhizium anisopliae. Acta Trop 102 :151–158.

    • Search Google Scholar
    • Export Citation
  • 47

    Ito J, Ghosh A, Moreira LA, Wimmer EA, Jacobs-Lorena M, 2002. Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite. Nature 417 :452–455.

    • Search Google Scholar
    • Export Citation
  • 48

    Bonning BC, Hammock BD, 1996. Development of recombinant baculoviruses for insect control. Annu Rev Entomol 41 :191–210.

 
 
 

 

 
 
 

 

 

 

 

 

 

Reduced Efficacy of Pyrethroid Space Sprays for Dengue Control in an Area of Martinique with Pyrethroid Resistance

View More View Less
  • 1 Laboratoire de Lutte Contre les Insectes Nuisibles, Unité de Recherche 016, et Génétique et Evolution des Maladies Infectieuses, Unité Mixte Recherche 2724, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Montpellier, France; Centre de Démoustication, Conseil Général de la Martinique, Fort de France, Martinique; Entente Interdépartementale pour la Démoustication du Littoral Méditerranéen, Montpellier, France

In the Caribbean, insecticide resistance is widely developed in Aedes aegypti and represents a serious obstacle for dengue vector control. The efficacy of pyrethroid and organophosphate ultra-low volume space sprays was investigated in Martinique where Ae. aegypti has been shown to be resistant to conventional insecticides. In the laboratory, a wild-field caught population showed high levels of resistance to deltamethrin, organophosphate (naled), and pyrethrum. Simulated-field trials showed that this resistance can strongly reduce the knock-down effect and mortality of deltamethrin and synergized pyrethrins when applied by thermal-fogging. Conversely, the efficacy of naled was high against insecticide-resistant mosquitoes. Chemical analyses of nettings exposed to the treatments showed a decrease in residues over distance from release for the pyrethroids, and naled was not detected. This finding has important implications for dengue vector control and emphasizes the need to develop innovative strategies to maintain effective control of resistant Ae. aegypti populations.

Save