• 1

    Desjeux P, 2004. Leishmaniasis: current situation and new perspectives. Comp Immunol Microbiol Infect Dis 27 :305–318.

  • 2

    Barral A, Pedral-Sampaio D, Grimaldi Junior G, Momen H, McMahon-Pratt D, Ribeiro de Jesus A, Almeida R, Badaro R, Barral-Netto M, Carvalho EM, Johnson Jr WD, 1991. Leishmaniasis in Bahia, Brazil: evidence that Leishmania amazonensis produces a wide spectrum of clinical disease. Am J Trop Med Hyg 44 :536–546.

    • Search Google Scholar
    • Export Citation
  • 3

    Leon LL, Barral A, Machado GMC, Grimaldi G Jr, 1992. Antigenic differences among Leishmania amazonensis isolates and their relationships with distinct clinical forms of the disease. Mem Inst Oswaldo Cruz 87 :229–234.

    • Search Google Scholar
    • Export Citation
  • 4

    Azeredo-Coutinho RB, Conceição-Silva F, Schubach A, Cupolillo E, Quintella LP, Madeira MF, Pacheco RS, Valete-Rosalino CM, Mendonça SC, 2007. First report of diffuse cutaneous leishmaniasis and Leishmania amazonensis infection in Rio de Janeiro State, Brazil. Trans R Soc Trop Med Hyg 101 :735–737.

    • Search Google Scholar
    • Export Citation
  • 5

    Herwaldt BL, Berman JD, 1992. Recommendations for treating leishmaniasis with sodium stibogluconate (Pentostam) and review of pertinent clinical studies. Am J Trop Med Hyg 46 :296–306.

    • Search Google Scholar
    • Export Citation
  • 6

    Croft SL, Coombs GH, 2003. Leishmaniasis current chemotherapy and recent advances in the search for novel drugs. Trends Parasitol 19 :502–508.

    • Search Google Scholar
    • Export Citation
  • 7

    Sundar S, 2001. Treatment of visceral leishmaniasis. Med Microbiol Immunol (Berl) 190 :89–92.

  • 8

    Croft SL, Vivas L, Brooker S, 2003. Recent advances in research and control of malaria, leishmaniasis, trypanosomiasis and schistosomiasis. East Mediterr Health J 9 :518–533.

    • Search Google Scholar
    • Export Citation
  • 9

    Croft SL, Sundar S, Fairlamb AH, 2006. Drug resistance in and leishmaniasis. Clin Microbiol Rev 19 :111–126.

  • 10

    Barreiro EJ, Fraga CA, Miranda Rodrigues AL, 2002. A química medicinal de N-acilidrazonas: novos compostos-protótipos de fármacos analgésicos, antiinflamatórios e anti-trombóticos. Quim Nova 25 :129–148.

    • Search Google Scholar
    • Export Citation
  • 11

    Rostom SA, Shalaby MA, El-Demellawy MA, 2003. Polysubstituted pyrazoles, part 5. Synthesis of new 1-(4-chlorophenyl)-4-hydroxy-1H-pyrazole-3-carboxylic acid hydrazide analogs and some derived ring systems. A novel class of potential antitumor and anti-HCV agents. Eur J Med Chem 38 :959–974.

    • Search Google Scholar
    • Export Citation
  • 12

    Bernardino AM, Gomes AO, Charret KS, Freitas AC, Machado GM, Canto-Cavalheiro MM, Leon LL, Amaral VF, 2006. Synthesis and leishmanicidal activities of 1-(4-X-phenyl)-N′-[(4-Y-phenyl)methylene]-1H-pyrazole-4-carbohydrazides. Eur J Med Chem 41 :80–87.

    • Search Google Scholar
    • Export Citation
  • 13

    Grimaldi G Jr, David JR, McMahon-Pratt D, 1987. Identification and distribution of New World Leishmania species characterized by serodeme analysis using monoclonal antibodies, 1987. Am J Trop Med Hyg 36: 270–287. Erratum in Am J Trop Med Hyg 37 :414.

    • Search Google Scholar
    • Export Citation
  • 14

    Lima HC, Titus RG, 1996. Effects of sand fly vector saliva on development of cutaneous lesions and the immune response to Leishmania braziliensis in BALB/c mice. Infect Immun 64 :5442–5445.

    • Search Google Scholar
    • Export Citation
  • 15

    Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR, 1982. Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem 126 :131–138.

    • Search Google Scholar
    • Export Citation
  • 16

    Fournet A, Ferreira ME, Rojas de Arias A, Torres De Ortiz S, Fuentes S, Nakayama H, Schinini A, Hocquemiller R, 1996. In vivo efficacy of oral and intralesional administration of 2-substituted quinolines in experimental treatment of new world cutaneous leishmaniasis caused by Leishmania amazonensis. Antimicrob Agents Chemother 40 :2447–2451.

    • Search Google Scholar
    • Export Citation
  • 17

    Alves CR, Benévolo de Andrade TC, Alves JL, Pirmez C, 2004. Th1 and Th2 immunological profile induced by cysteine proteinase in murine leishmaniasis. Parasite Immunol 26 :127–135.

    • Search Google Scholar
    • Export Citation
  • 18

    Cunha AC, Figueiredo JM, Tributino JL, Miranda AL, Castro HC, Zingali RB, Fraga CA, de Souza MC, Ferreira VF, Barreiro EJ, 2003. Antiplatelet properties of novel N-substituted-phenyl-1,2,3-triazole-4-acylhydrazone derivatives. Bioorg Med Chem 11 :2051–2059.

    • Search Google Scholar
    • Export Citation
  • 19

    Croft SL, Seifert K, Yardley V, 2006. Current scenario of drug development for leishmaniasis. Indian J Med Res 123 :399–410.

  • 20

    Soto J, Berman J, 2006. Treatment of New World cutaneous leishmaniasis with miltefosine. Trans R Soc Trop Med Hyg 100 :34–40.

  • 21

    Sundar S, Murray HW, 2005. Availability of miltefosine for the treatment of kala-azar in India. Bull World Health Organ 83 :394–395.

  • 22

    Saenz RE, Paz H, Berman JD, 1990. Efficacy of ketoconazole against Leishmania braziliensis panamensis cutaneous leishmaniasis. Am J Med 89 :147–155.

    • Search Google Scholar
    • Export Citation
  • 23

    Salmanpour R, Handjani F, Nouhpisheh MK, 2001. Comparative study of the efficacy of oral ketoconazole with intra-lesional meglumine antimoniate (Glucantime) for the treatment of cutaneous leishmaniasis. J Dermatolog Treat 12 :159–162.

    • Search Google Scholar
    • Export Citation
  • 24

    Navin TR, Arana BA, Arana FE, Berman JD, Chajón JF, 1992. Placebo-controlled clinical trial of sodium stibogluconate (Pentostam) versus ketoconazole for treating cutaneous leishmaniasis in Guatemala. J Infect Dis 165 :528–534.

    • Search Google Scholar
    • Export Citation
  • 25

    Beach DH, Goad LJ, Holz GG Jr, 1988. Effects of antimycotic azoles on growth and sterol biosynthesis of Leishmania promastigotes. Mol Biochem Parasitol 31 :149–162.

    • Search Google Scholar
    • Export Citation
  • 26

    Guimarães ET, Santos LA, Ribeiro dos Santos R, Teixeira MM, dos Santos WL, Soares MB, 2006. Role of interleukin-4 and prostaglandin E2 in Leishmania amazonensis infection of BALB/c mice. Microbes Infect 8 :1219–1226.

    • Search Google Scholar
    • Export Citation
  • 27

    Oliveira MR, Alves TR, Pinto AC, Pereira Hde S, Leão-Ferreira LR, Moussatché N, de Frugulhetti IC, Ferreira VF, de Souza MC, 2004. Synthesis and antiviral activities of new pyrazolo[4,--c]quinolin-3-ones and their ribonucleoside derivatives. Nucleosides Nucleotides Nucleic Acids 23 :735–748.

    • Search Google Scholar
    • Export Citation
  • 28

    Tavares D, da Conceição Ribeiro R, Carlos da Silva A, 2006. Inflammatory lesion and parasite load are inversely associated in Leishmania amazonensis infected mice genetically selected according to oral tolerance susceptibility. Microbes Infect 8 :957–964.

    • Search Google Scholar
    • Export Citation
  • 29

    Cunha AC, Figueiredo JM, Tributino JL, Miranda AL, Castro HC, Zingali RB, Fraga CA, de Souza MC, Ferreira VF, Barreiro EJ, 2003. Antiplatelet properties of novel N-substituted-phenyl-1,2,3-triazole-4-acylhydrazone derivatives. Bioorg Med Chem 11 :2051–2059.

    • Search Google Scholar
    • Export Citation
  • 30

    Lima LM, Frattani FS, dos Santos JL, Castro HC, Fraga CA, Zingali RB, Barreiro EJ, 2008. Synthesis and anti-platelet activity of novel arylsulfonate–acylhydrazone derivatives, designed as antithrombotic candidates. Eur J Med Chem 43 :348–356.

    • Search Google Scholar
    • Export Citation
  • 31

    Matheus ME, Oliveira LF, Freitas AC, Carvalho AM, Barreiro EJ, 1991. Antinociceptive property of new 4-acyl-arylhydrazone pyrazole compounds. Braz J Med Biol Res 24 :1219–1222.

    • Search Google Scholar
    • Export Citation
  • 32

    Fraga CA, Barreiro EJ, 2006. Medicinal chemistry of N-acylhydrazones: new lead-compounds of analgesic, antiinflammatory and antithrombotic drugs. Curr Med Chem 13 :167–198.

    • Search Google Scholar
    • Export Citation
  • 33

    Kucukguzel SC, Kucukguzel I, Ulgen M, 2000. Metabolic and chemical studies on N-(4-chlorobenzyl)-N′-benzoylhydrazine. Farmaco 55 :624–630.

    • Search Google Scholar
    • Export Citation
  • 34

    Genin MJ, Biles C, Keiser BJ, Poppe SM, Swaney SM, Tarpley WG, Yagi Y, Romero DL, 2000. Novel 1,5-diphenylpyrazole nonnucleoside HIV-1 reverse transcriptase inhibitors with enhanced activity versus the delavirdine-resistant P236L mutant: lead identification and SAR of 3- substituted derivatives. J Med Chem 43 :1034–1040.

    • Search Google Scholar
    • Export Citation
  • 35

    Storer R, Ashton CJ, Baxter AD, Hann MM, Marr CL, Mason AM, Mo CL, Myers PL, Noble SA, Penn CR, Weir NG, Woods JM, Coe PL, 1999. The synthesis and antiviral activity of 4-fluoro-1-beta-D-ribofuranosyl-1H-pyrazole-3-carboxamide. Nucleosides Nucleotides 18 :203–216.

    • Search Google Scholar
    • Export Citation
  • 36

    Daidone G, Maggio B, Plescia S, Raffa D, Schillaci D, Migliara O, Caruso A, Cutuli VM, Amico-Roxas M, 1998. Synthesis and pharmacological evaluation of 1-methyl-5-[substituted-4 (3H)-oxo-1,2,3-benzotriazin-3-yl]-1H-pyrazole-4-acetic acid derivatives. Farmaco 30 :350–356.

    • Search Google Scholar
    • Export Citation
  • 37

    Gamage SA, Spicer JA, Rewcastle GW, Milton J, Sohal S, Dangerfield W, Mistry P, Vicker N, Charlton PA, Denny WA, 2002. Structure-activity relationships for pyrido-, imidazo-, pyrazolo-, pyrazino-, and pyrolophenazinecarboxamides as topoisomerase-targeted anticancer agents. J Med Chem 45 :740–743.

    • Search Google Scholar
    • Export Citation
  • 38

    Palomer A, Cabre F, Pascual J, Campos J, Trujillo MA, Entrena A, Gallo MA, García L, Mauleón D, Espinosa A, 2002. Identification of novel cyclooxygenase-2 selective inhibitors using pharmacophore models. J Med Chem 45 :1402–1411.

    • Search Google Scholar
    • Export Citation
  • 39

    Goetzl EJ, Pickett WC, 1980. The human PMN leukocyte chemotactic activity of complex hydroxy-eicosatetraenoic acids (HETEs). J Immunol 125 :1789–1791.

    • Search Google Scholar
    • Export Citation
  • 40

    Pettipher ER, Salter ED, Breslow R, Conklyn MJ, Farrell CA, Hingorani GP, Salter ED, Hackman BC, Wimberly DJ, 1993. Specific inhibition of leukotriene B4 (LTB4)-induced neutrophil emigration by 20-hydroxy LTB4: implications for the regulation of inflammatory responses. Br J Pharmacol 110 :423–427.

    • Search Google Scholar
    • Export Citation
  • 41

    Black DL, Marks TA, 1992. Role of maternal toxicity in assessing developmental toxicity in animals: a discussion. Regul Toxicol Pharmacol 16 :189–202.

    • Search Google Scholar
    • Export Citation
  • 42

    Bhattacharjee R, Sil PC, 2006. Protein isolate from the herb, Phyllanthus niruri L. (Euphorbiaceae), plays hepatoprotective role against carbon tetrachlorideinduced liver damage via its antioxidant properties. Food Chem Toxicol 45 :817–826.

    • Search Google Scholar
    • Export Citation
  • 43

    Liew FY, Li Y, Millott S, 1990. Tumor necrosis factor-alpha synergizes with IFN-gamma in mediating killing of Leishmania major through the induction of nitric oxide. J Immunol 145 :4306–4310.

    • Search Google Scholar
    • Export Citation
  • 44

    Mukbel RM, Patten C Jr, Gibson K, Ghosh M, Petersen C, Jones DE, 2007. Macrophage killing of Leishmania amazonensis amastigotes requires both nitric oxide and superoxide. Am J Trop Med Hyg 76 :669–675.

    • Search Google Scholar
    • Export Citation
  • 45

    Lemos de Souza V, Ascenção Souza J, Correia Silva TM, Sampaio Tavares Veras P, Rodrigues de-Freitas LA, 2000. Different Leishmania species determine distinct profiles of immune and histopathological responses in CBA mice. Microbes Infect 2 :1807–1815.

    • Search Google Scholar
    • Export Citation
  • 46

    Woods ML, Mayer J, Evans TG, Hibbs JB Jr, 1994. Antiparasitic effects of nitric oxide in an in vitro murine model of Chlamydia trachomatis infection and an in vivo murine model of Leishmania major infection. Immunol Ser 60 :179–195.

    • Search Google Scholar
    • Export Citation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Effect of Oral Treatment with Pyrazole Carbohydrazide Derivatives against Murine Infection by Leishmania amazonensis

View More View Less
  • 1 Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil; Instituto de Química, Departamento de Química Orgânica, Universidade Federal Fluminense, Programa de Pós-graduação em Química Orgânica, Niterói, Brazil; Instituto de Biologia, Departamento de Imunobiologia, Universidade Federal Fluminense, Niterói, Brazil
Restricted access

Newly synthesized pyrazole carbohydrazide derivatives with substituents X = Br/Y = NO2 and X = NO2/Y = Cl were independently investigated in the CBA mouse model of cutaneous leishmaniasis. Animals were infected with Leishmania amazonensis and treated two weeks after the parasitic infection with the pyrazole carbohydrazides for 45 days. Oral treatment with both compounds controlled evolution of footpad cutaneous lesions and dissemination of parasites to draining lymph nodes. Nitric oxide generation was observed in supernatants of lymph node cells from infected CBA mice that were treated with these compounds. The pyrazole carbohydrazide derivatives did not show any toxicity or cause alterations in body weight, plasma concentrations of alanine aminotransferase and aspartate aminotransferase, and urinary creatinine levels, but promoted a small decrease in blood neutrophils. These results provide new perspectives on the development of drugs with activities against leishmaniasis.

Save