• 1

    Steere AC, 2001. Lyme disease. N Engl J Med 345 :115–125.

  • 2

    Wang G, van Dam AP, Schwartz I, Dankert J, 1999. Molecular typing of Borrelia burgdorferi sensu lato: taxonomic, epidemiological, and clinical implications. Clin Microbiol Rev 12 :633–653.

    • Search Google Scholar
    • Export Citation
  • 3

    Eiffert H, Karsten A, Thomssen R, Christen HJ, 1998. Characterization of Borrelia burgdorferi strains in Lyme arthritis. Scand J Infect Dis 30 :265–268.

    • Search Google Scholar
    • Export Citation
  • 4

    Oteo JA, Backenson PB, del Mar Vitutia M, Garcia Monco JC, Rodriguez I, Escudero R, Anda P, 1998. Use of the C3H/He Lyme disease mouse model for the recovery of a Spanish isolate of Borrelia garinii from erythema migrans lesions. Res Microbiol 149 :39–46.

    • Search Google Scholar
    • Export Citation
  • 5

    Vasiliu V, Herzer P, Rossler D, Lehnert G, Wilske B, 1998. Heterogeneity of Borrelia burgdorferi sensu lato demonstrated by an OspA- type-specific PCR in synovail fluid from patients with Lyme arthritis. Med Microbiol Immunol (Berl) 187 :97–102.

    • Search Google Scholar
    • Export Citation
  • 6

    Ackermann R, Rehse-Kupper B, Gollmer E, Schmidt R, 1988. Chronic neurologic manifestations of erythema migrans borreliosis. Ann NY Acad Sci 539 :16–23.

    • Search Google Scholar
    • Export Citation
  • 7

    Anthonissen FM, DeKesel M, Hoet PP, Bigaignon GH, 1994. Evidence for the involvement of different genospecies of Borrelia in the clinical outcome of Lyme disease in Belgium. Res Microbiol 145 :327–331.

    • Search Google Scholar
    • Export Citation
  • 8

    Van Dam AP, Kuiper H, Vos K, Widjojokusumo A, De Jongh BM, Spanjaard L, Ramselaar ACP, Kramer MD, Dankert J, 1993. Different genospecies of Borrelia burgdorferi are associated with distinct clinical manifestations of Lyme borreliosis. Clin Infect Dis 17 :708–717.

    • Search Google Scholar
    • Export Citation
  • 9

    Steere AC, Bartenhagen NH, Craft JE, Hutchinson GJ, Newman JH, Rahn DW, Sigal LH, Spieler PH, Stenn KS, Malawista SE, 1983. The early clinical manifestations of Lyme disease. Ann Intern Med 99 :76–82.

    • Search Google Scholar
    • Export Citation
  • 10

    Steere AC, Schoen RT, Taylor E, 1987. The clinical evolution of Lyme arthritis. Ann Intern Med 107 :725–731.

  • 11

    Asbrink E, Olsson I, Hovmark A, 1986. Erythema chronicum migrans Afzelius in Sweden. A study on 231 patients. Zentralbl Bakteriol Mikrobiol Hyg [A] 263 :229–236.

    • Search Google Scholar
    • Export Citation
  • 12

    Barthold SW, Beck DS, Hansen GM, Terwilliger GA, Moody KD, 1990. Lyme borreliosis in selected strains and ages of laboratory mice. J Infect Dis 162 :133–138.

    • Search Google Scholar
    • Export Citation
  • 13

    Ma Y, Seiler KP, Eichwals EJ, Weis JH, Teuscher C, Weiss JJ, 1998. Distinct characteristics of resistance to Borrelia burgdorferi-induced arthritis in C57BL/6N mice. Infect Immun 66 :161–168.

    • Search Google Scholar
    • Export Citation
  • 14

    Barthold SW, 1996. Lyme borreliosis in the laboratory mouse. J Spirochetal Tick-Borne Dis 3 :22–44.

  • 15

    Yang L, Weis JH, Eichwald E, Kolbert CP, Persing DH, Weis JJ, 1994. Heritable susceptibility to severe Borrelia burgdorferi-induced arthritis is dominant and is associated with persistence of large numbers of spirochetes in tissues. Infect Immun 62 :492–500.

    • Search Google Scholar
    • Export Citation
  • 16

    Hu CM, Simon M, Kramer MD, Gern L, 1996. Tick factors and in vitro cultivation influence the protein profile, antigenicity and pathogenicity of a cloned Borrelia garinii isolate from Ixodes ricinus hemolymph. Infection 24 :251–257.

    • Search Google Scholar
    • Export Citation
  • 17

    Barthold SW, 1999. Specificity of infection-induced immunity among Borrelia burgdorferi sensu lato species. Infect Immun 67 :36–42.

  • 18

    Pachner AR, Dail D, Bai Y, Sondey M, Pak L, Narayan K, Cadavid D, 2004. Genotype determines phenotype in experimental Lyme borreliosis. Ann Neurol 56 :361–370.

    • Search Google Scholar
    • Export Citation
  • 19

    Wormser GP, Liveris D, Nowakowski J, Nadelman RB, Cavaliere LF, McKenna D, Holmgren D, Schwartz I, 1999. Association of specific subtypes of Borrelia burgdorferi with hematogenous dissemination in early Lyme disease. J Infect Dis 180 :720–725.

    • Search Google Scholar
    • Export Citation
  • 20

    Wang G, Ojaimi C, Iyer R, Saksenberg V, McClain SA, Wormser GP, Schwartz I, 2001. Impact of genotypic variation of Borrelia burgdorferi sensu stricto on kinetics of dissemination and severity of disease in C3H/HeJ mice. Infect Immun 69 :4303–4312.

    • Search Google Scholar
    • Export Citation
  • 21

    Wang G, Ojaimi C, Wu H, Saksenberg V, Iyer R, Liveris D, McClain SA, Wormser GP, Schwartz I, 2002. Disease severity in a murine model of Lyme borreliosis is associated with the genotype of the infecting Borrelia burgdorferi sensu stricto strain. J Infect Dis 186 :782–791.

    • Search Google Scholar
    • Export Citation
  • 22

    Baranton G, Seinost G, Theodore G, Postic D, Dykhuizen D, 2001. Distinct levels of genetic diversity of Borrelia burgdorferi are associated with different aspects of pathogenicity. Res Microbiol 152 :149–156.

    • Search Google Scholar
    • Export Citation
  • 23

    Lagal V, Postic D, Baranton G, 2002. Molecular diversity of the ospC gene in Borrelia. Impact on phylogeny, epidemiology and pathology. Wien Klin Wochenschr 114 :562–567.

    • Search Google Scholar
    • Export Citation
  • 24

    Barthold SW, Feng S, Bockenstadt LK, Fikrig E, Feen K, 1997. Protective and arthritis-resolving activity in sera of mice infected with Borrelia burgdorferi. Clin Infect Dis 25 :S9–S17.

    • Search Google Scholar
    • Export Citation
  • 25

    McKisic MD, Barthold SW, 2000. T-cell-independent responses to Borrelia burgdorferi are critical for protective immunity and resolution of Lyme disease. Infect Immun 68 :5190–5197.

    • Search Google Scholar
    • Export Citation
  • 26

    Feng S, Hodzic E, Barthold SW, 2000. Lyme arthritis resolution with antiserum to a 37-kilodalton Borrelia burgdorferi protein. Infect Immun 68 :4169–4173.

    • Search Google Scholar
    • Export Citation
  • 27

    McKisic MD, Redmond WL, Barthold SW, 2000. Cutting edge: T cell-mediated pathology in murine Lyme borreliosis. J Immunol 164 :6096–6099.

    • Search Google Scholar
    • Export Citation
  • 28

    Sobek V, Birkner N, Falk I, Wurch A, Kirschning CJ, Wagner H, Wallich R, Lamers MC, Simon MM, 2004. Direct toll-like receptor 2 mediated co-stimulation of T cells in the mouse system as a basis for chronic inflammatory joint disease. Arthritis Res Ther 6 :R433–R446.

    • Search Google Scholar
    • Export Citation
  • 29

    Pachner AR, Dail D, Bai YB, Sondey M, Pak L, Narayan K, Cadavid D, 2004. Genotype determines phenotype in experimental Lyme borreliosis. Ann Neurol 56 :361–370.

    • Search Google Scholar
    • Export Citation
  • 30

    Liveris D, Wormser GP, Nowakowski J, Nadelman R, Bittker S, Cooper D, Varde S, Moy FH, Forseter G, Pavia CS, Schwartz I, 1996. Molecular typing of Borrelia burgdorferi from Lyme disease patients by PCR-restriction fragment length polymorphism analysis. J Clin Microbiol 34 :1306–1309.

    • Search Google Scholar
    • Export Citation
  • 31

    Glickstein L, Edelstein M, Dong JZ, 2001. Gamma interferon is not required for arthritis resistance in the murine Lyme disease model. Infect Immun 69 :3737–3743.

    • Search Google Scholar
    • Export Citation
  • 32

    Morrison TB, Ma Y, Weis JH, Weis JJ, 1999. Rapid and sensitive quantification of Borrelia burgdorferi-infected mouse tissues by continuous fluorescent monitoring of PCR. J Clin Microbiol 37 :987–992.

    • Search Google Scholar
    • Export Citation
  • 33

    Dong Z, Edelstein M, Glickstein LJ, 1997. CD8+ T cells are activated during the early Th1 and Th2 immune responses in the murine Lyme disease model. Infect Immun 65 :5334–5337.

    • Search Google Scholar
    • Export Citation
  • 34

    Keane-Myers A, Nickell SP, 1995. T cell subset-dependent modulation of immunity to Borrelia burgdorferi in mice. J Immunol 154 :1770–1776.

    • Search Google Scholar
    • Export Citation
  • 35

    Weis JJ, McCracken BA, Ma Y, Fairbairn D, Roper RJ, Morrison TB, Weis JH, Zachary JF, Dorge RW, Teuscher C, 1999. Identification of quantitative trait loci governing arthritis severity and humoral responses in the murine model of Lyme disease. J Immunol 162 :948–956.

    • Search Google Scholar
    • Export Citation
  • 36

    Norris SJ, 2006. Antigenic variation with a twist—the Borrelia story. Mol Microbiol 60 :1319–1322.

  • 37

    Livey I, Gibbs CP, Schuster R, Dorner F, 1995. Evidence for lateral transfer and recombination in OspC variation in Lyme disease Borrelia. Mol Microbiol 18 :257–269.

    • Search Google Scholar
    • Export Citation
  • 38

    Wilske B, Preac-Mursic V, Jauris S, Hofmann A, Pradel I, Soutschek E, Schwab E, Will G, Wanner G, 1993. Immunological and molecular polymorphisms of OspC, an immunodominant major outer surface protein of Borrelia burgdorferi. Infect Immun 61 :2182–2191.

    • Search Google Scholar
    • Export Citation
  • 39

    Wilske B, Jauris-Heipke S, Lobentanzer R, Pradel I, Preac-Mursic V, Rossler D, Soutschek E, Johnson RC, 1995. Phenotypic analysis of outer surface protein C (OspC) of Borrelia burgdorferi sensu lato by monoclonal antibodies: relationship to genospecies and OspA serotype. J Clin Microbiol 33 :103–109.

    • Search Google Scholar
    • Export Citation
  • 40

    Lunemann JD, Zarmas S, Priem S, Franz J, Zschenderlein R, Aberer E, Klein R, Schouls L, Burmester GR, Krause A, 2001. Rapid typing of Borrelia burgdorferi sensu lato species in specimens from patients with different manifestations of Lyme borreliosis. J Clin Microbiol 39 :1130–1133.

    • Search Google Scholar
    • Export Citation
  • 41

    Jaulhac B, Heller R, Limbach FX, Hansmann Y, Lipsker D, Monteil H, Sibilia J, Piemont Y, 2000. Direct molecular typing of Borrelia burgdorferi sensu lato species in synovial samples from patients with Lyme arthritis. J Clin Microbiol 38 :1895–1900.

    • Search Google Scholar
    • Export Citation
 
 
 

 

 

 

 

 

 

Arthritogenicity of Borrelia burgdorferi and Borrelia garinii: Comparison of Infection in Mice

View More View Less
  • 1 Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Charlestown, Massachusetts

Arthritogenicity, as determined by joint swelling and synovial histology, was compared between or within two Borrelia genospecies that cause Lyme arthritis in humans. The spirochete burden in bladder tissue (a site of spirochete persistence) was documented by quantitative polymerase chain reaction, and immune responses were analyzed. In C3H/HeJ mice, three B. burgdorferi isolates and two of the three B. garinii isolates induced severe arthritis and swelling. Previous designation as invasive or noninvasive B. garinii, or RNA spacer type of B. burgdorferi did not determine arthritis severity induced by isolates. Compared with the other five isolates, the B. garinii PBi isolate induced significantly less arthritis, a lower humoral immune response, and persisted at a much lower level in bladder tissue. However, B. garinii PBi isolates induced similar Borrelia antigen-specific inflammatory T cell responses from the local draining lymph node. Thus, diverse B. burgdorferi and B. garinii isolates were highly arthritogenic in immune competent mice.

Save