• 1

    van der Heyde HC, Nolan J, Combes V, Gramaglia I, Grau GE, 2006. A unified hypothesis for the genesis of cerebral malaria: sequestration, inflammation and hemostasis leading to micro-circulatory dysfunction. Trends Parasitol 22 :503–508.

    • Search Google Scholar
    • Export Citation
  • 2

    Medana IM, Chaudhri G, Chan-Ling T, Hunt NH, 2001. Central nervous system in cerebral malaria: “innocent bystander” or active participant in the induction of immunopathology? Immunol Cell Biol 79 :101–120.

    • Search Google Scholar
    • Export Citation
  • 3

    van Riet E, Hartgers FC, Yazdanbakhsh M, 2007. Chronic helminth infections induce immunomodulation: consequences and mechanisms. Immunobiol 212 :475–490.

    • Search Google Scholar
    • Export Citation
  • 4

    World Health Organization, 2004. Malaria cases (per 100,000) by country, latest available data. Available at: http://gamapserver.who.int/mapLibrary/Files/Maps/global_cases.jpg. Accessed April 8, 2008.

  • 5

    World Health Organization, 2006. Soil-transmitted helminth (STH) infections are widely distributed in tropical and subtropical areas – 2006. Available at: http://www.who.int/intestinal_worms/epidemiology/map/en/index.html. Accessed April 8, 2008.

  • 6

    Nacher M, Singhasivanon P, Yimsamran S, Manibunyong W, Thanyavanich N, Wuthisen P, Looareesuwan S, 2002. Intestinal helminth infections are associated with increased incidence of Plasmodium falciparum malaria in Thailand. J Parasitol 88 :55–58.

    • Search Google Scholar
    • Export Citation
  • 7

    Nacher M, Gay F, Singhasivanon P, Krudsood S, Treeprasertsuk S, Mazier D, Vouldoukis I, Looareesuwan S, 2000. Ascaris lumbricoides infection is associated with protection from cerebral malaria. Parasite Immunol 22 :107–113.

    • Search Google Scholar
    • Export Citation
  • 8

    Gause WC, Urban JF Jr, Stadecker MJ, 2003. The immune response to parasitic helminths: insights from murine models. Trends Immunol 24 :269–277.

    • Search Google Scholar
    • Export Citation
  • 9

    Su Z, Segura M, Morgan K, Loredo-Osti JC, Stevenson MM, 2005. Impairment of protective immunity to blood-stage malaria by concurrent nematode infection. Infect Immun 73 :3531–3539.

    • Search Google Scholar
    • Export Citation
  • 10

    Anthony RM, Urban JF Jr, Alem F, Hamed HA, Rozo CT, Boucher JL, van Rooijen N, Gause WC, 2006. Memory Th2 cells induce alternatively activated macrophages to mediate protection against nematode parasites. Nat Med 12 :955–960.

    • Search Google Scholar
    • Export Citation
  • 11

    Finney CAM, Taylor MD, Wilson MS, Maizels RM, 2007. Expansion and activation of CD4+CD25+ regulatory T cells in Heligmosomoides polygyrus infection. Eur J Immunol 37 :1874–1886.

    • Search Google Scholar
    • Export Citation
  • 12

    Shear HL, Srinivasan R, Nolan T, Ng C, 1989. Role of IFN-γ in lethal and nonlethal malaria in susceptible and resistant murine hosts. J Immunol 143 :2038–2044.

    • Search Google Scholar
    • Export Citation
  • 13

    Grau GE, Heremans H, Piguet PF, Pointaire P, Lambert PH, Billiau A, Vassalli P, 1989. Monoclonal antibody against interferon γ can prevent experimental cerebral malaria and its associated overproduction of tumour necrosis factor. Proc Natl Acad Sci USA 86 :5572–5574.

    • Search Google Scholar
    • Export Citation
  • 14

    Wilson MS, Taylor MD, Balic A, Finney CAM, Lamb JR, Maizels RM, 2005. Suppression of allergic airway inflammation by helminth-induced regulatory T cells. J Exp Med 202 :1199–1212.

    • Search Google Scholar
    • Export Citation
  • 15

    La Flamme AC, Ruddenklau K, Baecktroem BT, 2003. Schistosomiasis decreases central nervous system inflammation and alters the progression of experimental autoimmune encephalomyelitis. Infect Immun 71 :4996–5004.

    • Search Google Scholar
    • Export Citation
  • 16

    Gruden-Movsesijan A, Ilic N, Mostarica-Stojkovic M, Stosic-Grujicic S, Milic M, Sofronic-Milosavljevic Lj, 2008. Trichinella spiralis: modulation of experimental autoimmune encephalomyelitis in DA rats. Exp Parasitol 118 :641–647.

    • Search Google Scholar
    • Export Citation
  • 17

    Yanez DM, Manning DD, Cooley AJ, Weidanz WP, van der Heyde HC, 1996. Participation of lymphocyte subpopulations in the pathogenesis of experimental murine cerebral malaria. J Immunol 157 :1620–1624.

    • Search Google Scholar
    • Export Citation
  • 18

    Vinetz JM, Kumar S, Good MF, Fowlkes BJ, Berzofsky JA, Miller LH, 1990. Adoptive transfer of CD8+ cells from immune animals does not transfer immunity to blood stage Plasmodium yoelii malaria. J Immunol 144 :1069–1074.

    • Search Google Scholar
    • Export Citation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Concurrent Infection with Heligmosomoides polygyrus Modulates Murine Host Response against Plasmodium berghei ANKA Infection

View More View Less
  • 1 Department of Parasitology, Kyushu University Graduate School of Medicine, Fukuoka, Japan; Department of Tropical Medicine, The Jikei University School of Medicine, Tokyo, Japan; Department of Molecular Parasitology, Ehime University School of Medicine, To-on, Ehime, Japan
Restricted access

We investigated whether concurrent infection with Heligmosomoides polygyrus, an intestinal nematode, modulated anti-malaria parasite immunity and development of experimental cerebral malaria (ECM) in mice. The C57BL/6 mice infected with Plasmodium berghei ANKA showed typical symptoms of ECM. Interestingly, preceding H. polygyrus infection did not alter ECM development, despite accelerated P. berghei growth in vivo. Our observation provides a new insight that ECM can be induced in a fashion independent of the immune responses affected by concurrent H. polygyrus. Differentiation between protective immunity and infection-associated host-damaging inflammatory response is urgently required for understanding the pathogenesis of cerebral malaria.

Save