An Envelope Domain III–based Chimeric Antigen Produced in Pichia pastoris Elicits Neutralizing Antibodies Against All Four Dengue Virus Serotypes

Behzad Etemad Recombinant Gene Products Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India

Search for other papers by Behzad Etemad in
Current site
Google Scholar
PubMed
Close
,
Gaurav Batra Recombinant Gene Products Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India

Search for other papers by Gaurav Batra in
Current site
Google Scholar
PubMed
Close
,
Rajendra Raut Recombinant Gene Products Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India

Search for other papers by Rajendra Raut in
Current site
Google Scholar
PubMed
Close
,
Satinder Dahiya Recombinant Gene Products Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India

Search for other papers by Satinder Dahiya in
Current site
Google Scholar
PubMed
Close
,
Saima Khanam Recombinant Gene Products Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India

Search for other papers by Saima Khanam in
Current site
Google Scholar
PubMed
Close
,
Sathyamangalam Swaminathan Recombinant Gene Products Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India

Search for other papers by Sathyamangalam Swaminathan in
Current site
Google Scholar
PubMed
Close
, and
Navin Khanna Recombinant Gene Products Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India

Search for other papers by Navin Khanna in
Current site
Google Scholar
PubMed
Close
Restricted access

There is currently no vaccine to prevent dengue (DEN) virus infection, which is caused by any one of four closely related serotypes, DEN-1, DEN-2, DEN-3, or DEN-4. A DEN vaccine must be tetravalent, because immunity to a single serotype does not offer cross-protection against the other serotypes. We have developed a novel tetravalent chimeric protein by fusing the receptor-binding envelope domain III (EDIII) of the four DEN virus serotypes. This protein was expressed in the yeast, Pichia pastoris, and purified to near homogeneity in high yields. Antibodies induced in mice by the tetravalent protein, formulated in different adjuvants, neutralized the infectivity of all four serotypes. This, coupled with the high expression potential of the P. pastoris system and easy one-step purification, makes the EDIII-based recombinant protein a potentially promising candidate for the development of a safe, efficacious, and inexpensive, tetravalent DEN vaccine.

Author Notes

Reprint requests: Navin Khanna, RGP Group, PO Box 10504, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India, Tel: 91-11-26742357, ext. 272, Fax: 91-11-26742316, E-mail: navin@icgeb.res.in.
  • 1

    Lindenbach BD, Rice CM, 2001. Flaviviridae: the viruses and their replication. Knipe DM, Howley PM, eds. Field’s Virology. Fourth edition. Philadelphia, PA: Lippincott Williams & Wilkins, 991–1041.

  • 2

    Gubler DJ, 1998. Dengue and dengue haemorrhagic fever. Clin Microbiol Rev 11 :480–496.

  • 3

    Guzmán MG, Kouri G, 2002. Dengue: an update. Lancet Infect Dis 2 :33–42.

  • 4

    Gibbons RV, Vaughn DW, 2002. Dengue: an escalating problem. BMJ 324 :1563–1566.

  • 5

    Innis BL, 1997. Antibody responses to dengue virus infection. Gubler DJ, Kuno G, eds. Dengue and Dengue Hemorrhagic Fever. New York: CAB International, 221–243.

  • 6

    Halstead SB, Heinz FX, Barrett ADT, Roehrig JT, 2005. Conference report on Dengue virus: molecular basis of cell entry and pathogenesis, 25–27 June 2003, Vienna, Austria. Vaccine 23 :849–856.

    • Search Google Scholar
    • Export Citation
  • 7

    Kurane I, Ennis FA, 1997. Immunopathogenesis of dengue virus infections. Gubler DJ, Kuno G, eds. Dengue and Dengue Hemorrhagic Fever. Wallingford: CAB International, 273–290.

  • 8

    Hombach J, Barrett AD, Cardosa MJ, Deubel V, Guzman M, Kurane I, Roehrig JT, Sabchareon A, Kieny MP, 2005. Meeting report on Review on flavivirus vaccine development: proceedings of a meeting jointly organized by the World Health Organization and the Thai ministry of public health, 26–27 April 2004, Bangkok, Thailand. Vaccine 23 :2689–2695.

    • Search Google Scholar
    • Export Citation
  • 9

    Kanesa-thasan N, Sun W, Kim-Ahn G, Van Albert S, Putnak JR, King A, Raengsakulsrach B, Christ-Schmidt H, Gilson K, Zahradnik JM, Vaughn DW, Innis BL, Saluzzo JF, Hoke CHJr, 2001. Safety and immunogenicity of attenuated dengue virus vaccines (Aventis Pasteur) in human volunteers. Vaccine 19 :3179–3188.

    • Search Google Scholar
    • Export Citation
  • 10

    Edelman R, Wasserman SS, Bodison SA, Putnak RJ, Eckels KH, Tang D, Kanesa-Thasan N, Vaughn DW, Innis BL, Sun W, 2003. Phase I trial of 16 formulations of a tetravalent live-attenuated dengue vaccine. Am J Trop Med Hyg 69 (Suppl 6):48–60.

    • Search Google Scholar
    • Export Citation
  • 11

    Kitchener S, Nissen M, Nasveld P, Forrat R, Yoksan S, Lang J, Saluzzo JF, 2006. Immunogenicity and safety of two live-attenuated tetravalent dengue vaccine formulations in healthy Australian adults. Vaccine 24 :1238–1241.

    • Search Google Scholar
    • Export Citation
  • 12

    Guirakhoo F, Arroyo J, Pugachev KV, Miller C, Zhang ZX, Weltzin R, Georgakopoulos K, Catalan J, Ocran S, Soike K, Ratterree M, Monath TP, 2001. Construction, safety, and im-munogenicity in nonhuman primates of a chimeric yellow fever-dengue virus tetravalent vaccine. J Virol 75 :7290–7304.

    • Search Google Scholar
    • Export Citation
  • 13

    Guirakhoo F, Kitchener S, Morrison D, Forrat R, McCarthy K, Nichols R, Yoksan S, Duan X, Ermak TH, Kanesa-Thasan N, Bedford P, Lang J, Quentin-Millet MJ, Monath TP, 2006. Live attenuated chimeric yellow fever dengue type 2 (Chi-meriVaxTM-DEN2) vaccine: phase I clinical trial for safety and immunogenicity: effect of yellow fever prior immunity in induction of cross neutralizing antibody responses to all. Human Vaccines 2 :60–67.

    • Search Google Scholar
    • Export Citation
  • 14

    Seligman SJ, Gould EA, 2004. Live flavivirus vaccines: reasons for caution. Lancet 363 :2073–2075.

  • 15

    Putnak R, Feighny R, Burrous J, Cochran M, Hackett C, Smith G, Hoke C, 1991. Dengue-1 virus envelope glycoprotein gene expressed in recombinant baculovirus elicits virus-neutralizing antibody in mice and protects them from virus challenge. Am J Trop Med Hyg 45 :159–167.

    • Search Google Scholar
    • Export Citation
  • 16

    Delenda C, Staropoli I, Frenkiel MP, Cabanié L, Deubel V, 1994. Analysis of C-terminally truncated dengue 2 and dengue 3 virus envelope glycoproteins: processing in insect cells and im-munogenic properties in mice. J Gen Virol 75 :1569–1578.

    • Search Google Scholar
    • Export Citation
  • 17

    Simmons M, Nelson WM, Wu SJ, Hayes CG, 1998. Evaluation of the protective efficacy of a recombinant dengue envelope B domain fusion protein against dengue 2 virus infection in mice. Am J Trop Med Hyg 58 :655–662.

    • Search Google Scholar
    • Export Citation
  • 18

    Kelly EP, Greene JJ, King AD, Innis BL, 2000. Purified dengue 2 virus envelope glycoprotein aggregates produced by bacu-lovirus are immunogenic in mice. Vaccine 18 :2549–2559.

    • Search Google Scholar
    • Export Citation
  • 19

    Konishi E, Yamaoka M, Kurane I, Mason PW, 2000. A DNA vaccine expressing dengue type 2 virus premembrane and envelope genes induces neutralizing antibody and memory B cells in mice. Vaccine 18 :1133–1139.

    • Search Google Scholar
    • Export Citation
  • 20

    Men R, Wyatt L, Tokimatsu I, Arakaki S, Shameem G, Elkins R, Chanock R, Moss B, Lai CJ, 2000. Immunization of rhesus monkeys with a recombinant of modified vaccinia virus An-kara expressing a truncated envelope glycoprotein of dengue type 2 virus induced resistance to dengue type 2 virus challenge. Vaccine 18 :3113–3122.

    • Search Google Scholar
    • Export Citation
  • 21

    Simmons M, Murphy GS, Hayes CG, 2001. Short report: antibody responses of mice immunized with a tetravalent dengue recombinant protein subunit vaccine. Am J Trop Med Hyg 65 :159–161.

    • Search Google Scholar
    • Export Citation
  • 22

    Hermida L, Rodríguez R, Lazo L, Lopez C, Márquez G, Páez R, Suárez C, Espinosa R, Garcia J, Guzmán G, Guillén G, 2002. A recombinant envelope protein from dengue virus purified by IMAC is bioequivalent with its immune-affinity chromatography purified counterpart. J Biotechnol 94 :213–216.

    • Search Google Scholar
    • Export Citation
  • 23

    Muné M, Rodríguez R, Ramírez R, Soto Y, Sierra B, Roche RR, Marquez G, Garcia J, Guillén G, Guzmán MG, 2003. Carboxy-terminally truncated dengue 4 virus envelope glycoprotein expressed in Pichia pastoris induced neutralizing antibodies and resistance to dengue 4 virus challenge in mice. Arch Virol 148 :2267–2273.

    • Search Google Scholar
    • Export Citation
  • 24

    Wei HY, Jiang LF, Xue YH, Fang DY, Guo HY, 2003. Secreted expression of dengue virus type 2 full-length envelope glyco-protein in Pichia pastoris. J Virol Methods 109 :17–23.

    • Search Google Scholar
    • Export Citation
  • 25

    Hermida L, Rodríguez R, Lazo L, Bernardo L, Silva R, Zulueta A, López C, Martín J, Valdes I, del Rosario D, Guillén G, Guzmán MG, 2004. A fragment of the envelope protein from dengue-1 virus, fused in two different sites of the meningococ-cal P64k protein carrier, induces a functional immune response in mice. Biotechnol Appl Biochem 39 :107–114.

    • Search Google Scholar
    • Export Citation
  • 26

    Hermida L, Rodríguez R, Lazo L, Silva R, Zulueta A, Chinea G, López C, Guzmán MG, Guillén G, 2004. A dengue-2 envelope fragment inserted within the structure of the P64k meningo-coccal protein carrier enables a functional immune response against the virus in mice. J Virol Methods 115 :41–49.

    • Search Google Scholar
    • Export Citation
  • 27

    Mota J, Acosta M, Argotte R, Figueroa R, Méndez A, Ramos C, 2005. Induction of protective antibodies against dengue virus by tetravalent DNA immunization of mice with domain III of the envelope protein. Vaccine 23 :3469–3476.

    • Search Google Scholar
    • Export Citation
  • 28

    Apt D, Raviprakash K, Brinkman A, Semyonov A, Yang S, Skinner C, Diehl L, Lyons R, Porter K, Punnonen J, 2006. Tetravalent neutralizing antibody response against four dengue sero-types by a single chimeric dengue envelope antigen. Vaccine 24 :335–344.

    • Search Google Scholar
    • Export Citation
  • 29

    Konishi E, Kosugi S, Imoto JI, 2006. Dengue tetravalent DNA vaccine inducing neutralizing antibody and anamnestic responses to four serotypes in mice. Vaccine 24 :2200–2207.

    • Search Google Scholar
    • Export Citation
  • 30

    Hermida L, Bernardo L, Martín J, Alvarez M, Prado I, López C, Sierra B, Martínez R, Rodríguez R, Zulueta A, Pérez AB, Lazo L, Rosario D, Guillén G, Guzmán MG, 2006. A recombinant fusion protein containing the domain III of the dengue-2 envelope protein is immunogenic and protective in non-human primates. Vaccine 24 :3165–3171.

    • Search Google Scholar
    • Export Citation
  • 31

    Zulueta A, Martín J, Hermida L, Alvarez M, Valdés I, Prado I, Chinea G, Rosario D, Guillén G, Guzmán MG, 2006. Amino acid changes in the recombinant dengue 3 envelope domain III determine its antigenicity and immunogenicity in mice. Virus Res 121 :65–73.

    • Search Google Scholar
    • Export Citation
  • 32

    Raja NU, Holman DH, Wang D, Raviprakash K, Juompan LY, Deitz SB, Luo M, Zhang J, Porter KR, Dong JY, 2007. Induction of bivalent immune responses by expression of dengue virus type 1 and type 2 antigens from a single complex aden-oviral vector. Am J Trop Med Hyg 76 :743–751.

    • Search Google Scholar
    • Export Citation
  • 33

    Holman DH, Wang D, Raviprakash K, Raja NU, Luo M, Zhang J, Porter KR, Dong JY, 2007. Two complex, adenovirus-based vaccines that together induce immune responses to all four dengue virus serotypes. Clin Vac Immunol 14 :182–189.

    • Search Google Scholar
    • Export Citation
  • 34

    Khanam S, Etemad B, Khanna N, Swaminathan S, 2006. Induction of neutralizing antibodies specific to dengue virus sero-types 2 and 4 by a bivalent antigen composed of linked envelope domains III of these two serotypes. Am J Trop Med Hyg 74 :266–277.

    • Search Google Scholar
    • Export Citation
  • 35

    Khanam S, Khanna N, Swaminathan S, 2006. Induction of antibodies and T cell responses by dengue virus type 2 envelope domain III encoded by plasmid and adenoviral vectors. Vaccine 24 :6513–6525.

    • Search Google Scholar
    • Export Citation
  • 36

    Khanam S, Rajendra P, Khanna N, Swaminathan S, 2007. An adenovirus prime/plasmid boost strategy for induction of equi-potent immune responses to two dengue virus serotypes. BMC Biotechnol 7 :10.

    • Search Google Scholar
    • Export Citation
  • 37

    Modis Y, Ogata S, Clements D, Harrison SC, 2003. A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc Natl Acad Sci USA 100 :6986–6991.

    • Search Google Scholar
    • Export Citation
  • 38

    Modis Y, Ogata S, Clements D, Harrison SC, 2005. Variable surface epitopes in the crystal structure of dengue virus type 3 envelope glycoprotein. J Virol 79 :1223–1231.

    • Search Google Scholar
    • Export Citation
  • 39

    Chen Y, Maguire T, Hileman RE, Fromm JR, Esko JD, Linhardt RJ, Marks RM, 1997. Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nat Med 3 :866–871.

    • Search Google Scholar
    • Export Citation
  • 40

    Mégret F, Hugnot JP, Falconar A, Gentry MK, Morens DM, Murray JM, Schlesinger JJ, Wright PJ, Young P, van Regen-mortel MHV, Deubel V, 1992. Use of recombinant fusion proteins and monoclonal antibodies to define linear and discontinuous antigenic sites on the dengue envelope glycoprotein. Virology 187 :480–491.

    • Search Google Scholar
    • Export Citation
  • 41

    Roehrig JT, Johnson AJ, Hunt AR, Bolin RA, Chu MC, 1990. Antibodies to dengue 2 virus E-glycoprotein synthetic peptides identify antigenic conformation. Virology 177 :668–675.

    • Search Google Scholar
    • Export Citation
  • 42

    Roehrig JT, Bolin RA, Kelly RG, 1998. Monoclonal antibody mapping of the envelope glycoprotein of the dengue 2 virus, Jamaica. Virology 246 :317–328.

    • Search Google Scholar
    • Export Citation
  • 43

    Churdboonchart V, Bhamarapravati N, Peampramprecha S, Siri-navin S, 1991. Antibodies against dengue viral proteins in primary and secondary dengue hemorrhagic fever. Am J Trop Med Hyg 44 :481–493.

    • Search Google Scholar
    • Export Citation
  • 44

    Crill WD, Roehrig RT, 2001. Monoclonal antibodies that bind to domain III of dengue virus E glycoprotein are the most efficient blockers of virus adsorption to Vero cells. J Virol 75 :7769–7773.

    • Search Google Scholar
    • Export Citation
  • 45

    Bhardwaj S, Holbrook M, Shope RE, Barrett ADT, Watowich SJ, 2001. Biophysical characterization and vector-specific antagonist activity of domain III of the tick-borne flavivirus envelope protein. J Virol 75 :4002–4007.

    • Search Google Scholar
    • Export Citation
  • 46

    Hung JJ, Hsieh MT, Young MJ, Kao CL, King CC, Chang W, 2004. An external loop region of domain III of dengue virus type 2 envelope protein is involved in serotype-specific binding to mosquito but not mammalian cells. J Virol 78 :378–388.

    • Search Google Scholar
    • Export Citation
  • 47

    Chin JFL, Chu JJH, Ng ML, 2007. The envelope glycoprotein domain III of dengue virus serotypes 1 and 2 inhibit virus entry. Microbes Infect 9 :1–6.

    • Search Google Scholar
    • Export Citation
  • 48

    Jaiswal S, Khanna N, Swaminathan S, 2004. High-level expression and one-step purification of recombinant dengue virus type-2 envelope domain III protein in Escherichia coli. Protein Exp Purif 33 :80–91.

    • Search Google Scholar
    • Export Citation
  • 49

    Roehrig JT, Volpe KE, Squires J, Hunt AR, Davis BS, Chang GJ, 2004. Contribution of disulfide bridging to epitope expression of the dengue type 2 virus envelope glycoprotein. J Virol 78 :2648–2652.

    • Search Google Scholar
    • Export Citation
  • 50

    Kuhn RJ, Zhang W, Rossman MG, Pletnev SV, Corver J, Lenches E, Jones CT, Mukhopadhyay S, Chipman PR, Strauss EG, Baker TS, Strauss JH, 2002. Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108 :717–725.

    • Search Google Scholar
    • Export Citation
  • 51

    Wang S, He R, Anderson R, 1999. PrM- and cell-binding domains of the dengue virus E protein. J Virol 73 :2547–2551.

  • 52

    Cereghino GP, Lin Cereghino J, Ilgen C, Cregg JM, 2002. Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris. Curr Opin Biotechnol 13 :329–332.

    • Search Google Scholar
    • Export Citation
  • 53

    Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM, 2005. Heterologous protein production using the Pichia pastoris expression system. Yeast 22 :249–270.

    • Search Google Scholar
    • Export Citation
  • 54

    Cregg JM, Tschopp JF, Stillman C, Siegel R, Akong M, Craig WS, Buckholz RG, Madden KR, Kellaris PA, Davis GR, Smi-ley BL, Cruze J, Torregrossa R, Velicelibi G, Thill GP, 1987. High level expression and efficient assembly of hepatitis B surface antigen in the methylotrophic yeast, Pichia pastoris. Biotechnology (NY) 5 :479–485.

    • Search Google Scholar
    • Export Citation
  • 55

    Vassileva A, Chugh DA, Swaminathan S, Khanna N, 2001. Effect of copy number on the expression levels of hepatitis B surface antigen in the methylotrophic yeast Pichia pastoris. Protein Exp Purif 21 :71–80.

    • Search Google Scholar
    • Export Citation
  • 56

    Kjeldsen T, Pettersson AF, Hach M, 1999. Secretory expression and characterization of insulin in Pichia pastoris. Biotechnol Appl Biochem 29 :79–86.

    • Search Google Scholar
    • Export Citation
  • 57

    Russell PK, Nisalak A, Sukhavachana P, Vivona S, 1967. A plaque reduction test for dengue virus neutralizing antibodies. J Immunol 99 :285–290.

    • Search Google Scholar
    • Export Citation
  • 58

    Durbin AP, Karron RA, Sun W, Vaughn DW, Reynolds MJ, Perreault JP, Thumar B, Men R, Lai CJ, Elkins WR, Chanock RM, Murphy BR, Whitehead SS, 2001. Attenuation and im-munogenicity in humans of a live dengue virus type-4 vaccine candidate with a 30 nucleotide deletion in its 3′-untranslated region. Am J Trop Med Hyg 65 :405–413.

    • Search Google Scholar
    • Export Citation
  • 59

    Alvarez M, Rodriguez-Roche R, Bernardo L, Morier L, Guzman MG, 2005. Improved dengue virus plaque formation on BHK21 and LLCMK2 cells: evaluation of some factors. WHO Dengue Bull 29 :49–57.

    • Search Google Scholar
    • Export Citation
  • 60

    AnandaRao R, Swaminathan S, Fernando S, Jana AM, Khanna N, 2005. A custom-designed recombinant multiepitope protein as a dengue diagnostic reagent. Protein Exp Purif 41 :136–147.

    • Search Google Scholar
    • Export Citation
  • 61

    Sugrue RJ, Cui T, Xu Q, Fu J, Chan YC, 1997. The production of recombinant dengue virus E protein using Escherichia coli and Pichia pastoris. J Virol Methods 69 :159–169.

    • Search Google Scholar
    • Export Citation
  • 62

    Kenney RT, Edelman R, 2003. Survey of human-use adjuvants. Expert Rev Vaccines 2 :167–188.

  • 63

    Simmons M, Porter KR, Hayes CG, Vaughn DW, Putnak R, 2006. Characterization of antibody responses to combinations of a dengue virus type 2 DNA vaccine and two dengue virus type 2 protein vaccines in Rhesus macaques. J Virol 80 :9577–9585.

    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 26 26 11
Full Text Views 294 78 0
PDF Downloads 127 22 0
 
Membership Banner
 
 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save