• 1

    Gubler DJ, 1997. Dengue and dengue hemorrhagic fever; its history and resurgence as a global public health problem. Gubler DJ, Kuno G, eds. Dengue and Dengue Hemorrhagic Fever. New York: CAB International, 1–22.

  • 2

    Gubler DJ, 1998. Dengue and dengue hemorrhagic fever. Clin Microbiol Rev 11 :480–496.

  • 3

    Tassniyom S, Vasanawathana S, Chirawatkul A, Rojanasuphot S, 1993. Failure of high-dose methylprednisolone in established dengue shock syndrome: a placebo-controlled, double-blind study. Pediatrics 92 :111–115.

    • Search Google Scholar
    • Export Citation
  • 4

    Monath TP, Lee VH, Wilson DC, Fagbami A, Tomori O, 1974. Arbovirus studies in Nupeko forest, a possible natural focus of yellow fever virus in Nigeria. I. Description of the area and serological survey of humans and other vertebrate hosts. T Roy Soc Trop Med H 68 :30–38.

    • Search Google Scholar
    • Export Citation
  • 5

    Fagbami AH, Monath TP, Fabiyi A, 1977. Dengue virus infections in Nigeria: a survey for antibodies in monkeys and humans. T Roy Soc Trop Med H 71 :60–65.

    • Search Google Scholar
    • Export Citation
  • 6

    Saluzzo JF, Cornet M, Castagnet P, Rey C, Digoutte JP, 1986. Isolation of dengue 2 and dengue 4 viruses from patients in Senegal. T Roy Soc Trop Med H 80 :85.

    • Search Google Scholar
    • Export Citation
  • 7

    Cornet M, 1993. Dengue Virus in Africa. Monograph on Dengue and Dengue Hemorrhagic Fever, SEARO 22. Geneva: World Health Organization.

  • 8

    Zeller HG, Traore-Lamizana M, Monlun E, Hervy JP, Mondo M, Digoutte JP, 1992. Dengue-2 virus isolation during an epizootic in southeast Senegal in November, 1990. Res Virol 143 :101–102.

    • Search Google Scholar
    • Export Citation
  • 9

    Traore-Lamizana M, Zeller H, Monlun E, Mondo M, Hervy JP, Adam F, Digoutte JP, 1994. Dengue 2 outbreak in southeast Senegal during 1990: virus isolations from mosquitoes (Diptera: Culicidae). J Med Entomol 31 :623–627.

    • Search Google Scholar
    • Export Citation
  • 10

    Gubler D, Rosen L, 1979. Variation in susceptibility to oral infection with dengue viruses among geographic strains of Aedes aegypti. Am J Trop Med Hyg 28 :1045–1052.

    • Search Google Scholar
    • Export Citation
  • 11

    Tardieux I, Poupel O, Lapchin L, Rodhain F, 1990. Variation among strains of Aedes aegypti in susceptibility to oral infection with dengue virus type 2. Am J Trop Med Hyg 43 :308–313.

    • Search Google Scholar
    • Export Citation
  • 12

    Tabachnick WJ, Powell JR, 1979. A world-wide survey of genetic variation in the yellow fever mosquito Aedes aegypti. Genet Res 34 :215–229.

    • Search Google Scholar
    • Export Citation
  • 13

    Failloux AB, Vazeille M, Rodhain F, 2002. Geographic genetic variation in populations of dengue virus vector Aedes aegypti. J Mol Evol 55 :653–663.

    • Search Google Scholar
    • Export Citation
  • 14

    Wallis GP, Tabachnick WJ, Powell JR, 1983. Macrogeographic genetic variation in a human commensal Aedes aegypti, the yellow fever mosquito. Genet Res 41 :241–258.

    • Search Google Scholar
    • Export Citation
  • 15

    Hervy JP, 1977. Expérience de marquage-lâcher-recapture, portant sur Aedes aegypti Linné, en zone de savane soudanienne ouest africaine II. Relations entre habitat, morphologie et comportement. Cah ORSTOM Entomol Méd Parasitol 15 :365–372.

    • Search Google Scholar
    • Export Citation
  • 16

    Paupy C, Vazeille-Falcoz M, Mousson L, Rodhain F, Failloux AB, 2000. Aedes aegypti in Tahiti and Moorea (French Polynesia): isoenzyme differentiation in the mosquito population according to human population density. Am J Trop Med Hyg 62 :217–224.

    • Search Google Scholar
    • Export Citation
  • 17

    Yeh FC, Boyle TJB, 1997. Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belgian J Bot 129 :157.

  • 18

    Goudet J, 1995. FSTAT (Version 1.2): A computer program to calculate F-statistics. J Hered 86 :485–486.

  • 19

    Excoffier L, Smouse PE, Quattro JM, 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131 :479–491.

    • Search Google Scholar
    • Export Citation
  • 20

    Excoffier L, Laval G, Schneider S, 2005. Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1 :47–50.

    • Search Google Scholar
    • Export Citation
  • 21

    Raymond M, Rousset F, 1995. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86 :248–249.

  • 22

    Weir BS, Cockerham CC, 1984. Estimating F-statistics for the analysis of population structure. Evol Int J Org Evol 38 :1358–1370.

  • 23

    Rousset F, Raymond M, 1995. Testing heterozygote excess and deficiency. Genetics 140 :1413–1419.

  • 24

    Smouse PE, Long JL, Sokal RR, 1986. Multiple regression and correlation extensions of the Mantel test of Matrix correspondence. Syst Zool 35 :627–632.

    • Search Google Scholar
    • Export Citation
  • 25

    Leduc A, Drapeau P, Bergeron Y, Legendre P, 1992. Study of partial components of forest cover using partial Mantel tests and path analysis. J Veg Sci 3 :69–78.

    • Search Google Scholar
    • Export Citation
  • 26

    Holm S, 1979. A simple sequentially rejective multiple test procedure. Scand J Stat 6 :65–70.

  • 27

    Ihaka R, Gentleman R, 1996. R: a language for data analysis and graphics. J Comput Graph Stat 5 :299–314.

  • 28

    Felsenstein J, 1989. PHYLIP-phylogeny inference package (version 3.2). Cladistics 5 :164–166.

  • 29

    Tabachnick WJ, Munstermann LE, Powell JR, 1979. Genetic distinctness of sympatric forms of Aedes aegypti in East Africa. Evol Int J Org Evol 33 :287–295.

    • Search Google Scholar
    • Export Citation
  • 30

    Tabachnick WJ, 1991. Evolutionary genetics and arthropod-borne disease: the yellow fever mosquito. Am Entomol 37 :14–24.

  • 31

    Miller BR, Monath TP, Tabachnick WJ, Ezike VI, 1989. Epidemic yellow fever caused by an incompetent mosquito vector. Trop Med Parasit 40 :396–399.

    • Search Google Scholar
    • Export Citation
  • 32

    Petersen JL, 1977. Behavior differences in two subspecies of Aedes aegypti (L.) (Dipetra: Culicidae) in East Africa. PhD thesis, University of Notre-Dame, IN.

  • 33

    McDonald PT, 1977. Population characteristics of domestic Aedes aegypti (Diptera: Culicidae) in villages on the Kenya coast. I. Adult survivorship and population size. J Med Entomol 14 :42–48.

    • Search Google Scholar
    • Export Citation
  • 34

    Trpis M, Hausermann W, 1986. Dispersal and other population parameter of Aedes aegypti in an African village and their possible significance in epidemiology of vector-borne diseases. Am J Trop Med Hyg 60 :1263–1279.

    • Search Google Scholar
    • Export Citation
  • 35

    Reiter P, Amador MA, Anderson RA, Clark GG, 1995. Dispersal of Aedes aegypti in an urban area after blood feeding as demonstrated by rubidium-marked eggs. Am J Trop Med Hyg 52 :177–179.

    • Search Google Scholar
    • Export Citation
  • 36

    Paupy C, Chantha N, Reynes J-M, Failloux A-B, 2005. Factors influencing the population structure of Aedes aegypti from the main cities in Cambodia. Heredity 95 :144–147.

    • Search Google Scholar
    • Export Citation
  • 37

    Huber K, Loan LL, Hoang TH, Ravel S, Rodhain F, Failloux A-B, 2002. Genetic differentiation of the dengue vector, Aedes aegypti (Ho Chi Minh City, Vietnam) using microsatellite markers. Mol Ecol 11 :1629–1635.

    • Search Google Scholar
    • Export Citation
  • 38

    Apostol BL, Black WC IV, Reiter P, Miller BR, 1994. Use of randomly amplified DNA by polymerase chain reaction markers to estimate the number of Aedes aegypti families at oviposition sites in San Juan Puerto Rico. Am J Trop Med Hyg 51 :89–97.

    • Search Google Scholar
    • Export Citation
  • 39

    Huber K, Luu Le L, Tran Huu H, Tran Kahn T, Rodhain F, Failloux AB, 2002. Temporal genetic variation in Aedes aegypti populations in Ho Chi Minh City (Vietnam). Heredity 89 :7–14.

    • Search Google Scholar
    • Export Citation
  • 40

    Hansson B, Westerberg L, 2002. On the correlation between heterozygosity and fitness in natural populations. Mol Ecol 11 :2467–2474.

  • 41

    David P, 1998. Heterozygosity-fitness correlations: new perspectives on old problems. Heredity 80 :531–537.

  • 42

    Gorrochotegui-Escalante N, Gomez-Machorro C, Lozano-Fuentes S, Fernandez-Salas I, De Lourdes Munoz M, Farfan-Ale JA, Garcia-Rejon J, Beaty BJ, Black WC IV, 2002. Breeding structure of Aedes aegypti populations in Mexico varies by region. Am J Trop Med Hyg 66 :213–222.

    • Search Google Scholar
    • Export Citation
  • 43

    Dujardin JP, 1998. Population genetics and the natural history of domestication in Tratominae. Mem Inst Oswaldo Cruz 93 (Suppl II):34–36.

    • Search Google Scholar
    • Export Citation
  • 44

    Schofield CJ, Diotaiuti L, Dujardin JP, 1999. The process of domestication in Triatominae. Mem Inst Oswaldo Cruz 94 :375–378.

  • 45

    Lanzaro GC, Zheng L, Toure YT, Traore SF, Kafatos FC, Vernick KD, 1995. Microsatellite DNA and isozyme variability in a West African population of Anopheles gambiae. Inst Mol Biol 4 :105–112.

    • Search Google Scholar
    • Export Citation
  • 46

    Costa-Ribeiro MCV, Lourenço-de-Oliveira R, Failloux AB, 2006. Higher genetic variation estimated by microsatellite compared to isoenzyme markers in Aedes aegypti from Rio de Janeiro. Mem Inst Oswaldo Cruz 101 :917–921.

    • Search Google Scholar
    • Export Citation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Aedes aegypti in Senegal: Genetic Diversity and Genetic Structure of Domestic and Sylvatic Populations

View More View Less
  • 1 Institut Pasteur de Dakar, Dakar, Senegal
Restricted access

Aedes aegypti is the main vector of dengue viruses. The epidemiology of dengue fever remains poorly understood in Senegal. A sylvatic transmission seems to predominate. However, despite the sylvatic circulation of the dengue virus and the presence of vectors in urban areas, only sporadic cases have been reported. Ae. aegypti is a polytypic species. In Senegal, a purely sylvatic form is found in the forest gallery areas and a domestic form is found in the villages in savannah and sahelian areas and in urban areas. Using allozymes, we analyzed the genetic diversity and the genetic structure of Ae. aegypti populations differing in their ecological characteristics. Populations from Senegal were significantly structured but with a low level of genetic differentiation. Ae. aegypti from the “domestic” populations show a decreased genetic diversity and a lower genetic differentiation compared with “sylvatic” populations. These findings suggest that environmental conditions, ecological factors, and human activities may impact the genetic structure of Ae. aegypti populations in Senegal.

Author Notes

Reprint requests: Karine Huber, UPR Contrôle des Maladies Animales Exotiques et Emergentes, Campus International de Baillarguet, TA A-15/G, 34398 Montpellier cedex 5, France, E-mail: karine.huber@cirad.fr.
Save