• 1

    Perry RD, Fetherston JD, 1997. Yersinia pestis—etiological agent of plague. Clin Microbiol Rev 10 :35–66.

  • 2

    Gage KL, 1998. Plague. Collier L, ed. Topley and Wilson’s Microbiology and Microbial Infections. Ninth edition. New York: Oxford University Press, Inc., 885–903.

  • 3

    Gage KL, Ostfeld RS, Olson JG, 1995. Nonviral vector-borne zoonoses associated with mammals in the United States. J Mammal 76 :695–715.

  • 4

    Pollitzer R. Plague. 1954. World Health Organization Monograph Series, No. 22. Geneva: WHO.

  • 5

    Barnes AM, 1982. Surveillance and control of bubonic plague in the United States. Symp Zool Soc London 50 :237–270.

  • 6

    Surgalla MJ, Beesley ED, 1969. Congo red-agar plating medium for detecting pigmentation in Pasteurella pestis. Appl Microbiol 18 :834–837.

    • Search Google Scholar
    • Export Citation
  • 7

    Hinnebusch BJ, Gage KL, Schwan TG, 1998. Estimation of vector infectivity rates for plague by means of a standard curve-based competitive polymerase chain reaction method to quantify Yersinia pestis in fleas. Am J Trop Med Hyg 58 :562–569.

    • Search Google Scholar
    • Export Citation
  • 8

    Glukhov AI, Gordeev SA, Al’tshuler ML, Zykova IE, Severin SE, 2003. [Use of nested PCR in detection of the plague pathogen.] Klin Lab Diagn 7: 48–50 (article in Russian).

    • Search Google Scholar
    • Export Citation
  • 9

    Tsukano H, Itoh K, Suzuki S, Watanabe H, 1996. Detection and identification of Yersinia pestis by polymerase chain reaction (PCR) using multiplex primers. Microbiol Immunol 40 :773–775.

    • Search Google Scholar
    • Export Citation
  • 10

    Leal NC, Almeida AM, 1999. Diagnosis of plague and identification of virulence markers in Yersinia pestis by multiplex-PCR. Rev Inst Med Trop Sao Paulo 41 :339–342.

    • Search Google Scholar
    • Export Citation
  • 11

    Stevenson HL, Bai Y, Kosoy MY, Montenieri JA, Lowell JL, Chu MC, Gage KL, 2003. Detection of novel Bartonella strains and Yersinia pestis in prairie dogs and their fleas (Siphonaptera: Ceratophyllidae and Pulicidae) using multiplex polymerase chain reaction. J Med Entomol 40 :329–337.

    • Search Google Scholar
    • Export Citation
  • 12

    Tomaso H, Reisinger EC, Al Dahouk S, Frangoulidis D, Rakin A, Landt O, Neubauer H, 2003. Rapid detection of Yersinia pestis with multiplex real-time PCR assays using fluorescent hybridisation probes. FEMS Immunol Med Microbiol 38 :117–126.

    • Search Google Scholar
    • Export Citation
  • 13

    Woron AM, Nazarian EJ, Egan C, McDonough KA, Cirino NM, Limburger RJ, Musser KA, 2006. Development and evaluation of a 4-target multiplex real-time polymerase chain reaction assay for the detection and characterization of Yersinia pestis. Diagn Microbiol Infect Dis 56 :261–268.

    • Search Google Scholar
    • Export Citation
  • 14

    Tomioka K, Peredelchuk M, Zhu X, Arena R, Volokhov D, Selvapandiyan A, Stabler K, Mellquist-Riemenschneider J, Chizhikov V, Kaplan G, Nakhasi H, Duncan R, 2005. A multiplex polymerase chain reaction microarray assay to detect bioterror pathogens in blood. J Mol Diagn 7 :486–494.

    • Search Google Scholar
    • Export Citation
  • 15

    Bogdanovich T, Carniel E, Fukushima H, Skurnik M, 2003. Use of O-antigen gene cluster-specific PCRs for the identification and O-genotyping of Yersinia pseudotuberculosis and Yersinia pestis. J Clin Microbiol 41 :5103–5112.

    • Search Google Scholar
    • Export Citation
  • 16

    Varma-Basil M, El-Hajj H, Marras SA, Hazbon MH, Mann JM, Connell ND, Kramer FR, Alland D, 2004. Molecular beacons for multiplex detection of four bacterial bioterrorism agents. Clin Chem 50 :1060–1062.

    • Search Google Scholar
    • Export Citation
  • 17

    Selvapandiyan A, Stabler K, Ansari NA, Kerby S, Riemenschneider J, Salotra P, Duncan R, Nakhasi HL, 2005. A novel semiquantitative fluorescence-based multiplex polymerase chain reaction assay for rapid simultaneous detection of bacterial and parasitic pathogens from blood. J Mol Diagn 7 :268–275.

    • Search Google Scholar
    • Export Citation
  • 18

    Chase CJ, Ulrich MP, Wasieloski LP, Kondig JP, Garrison J, Linler LE, Kulesh DA, 2005. Real-time PCR assays targeting a unique chromosomal sequence of Yersinia pestis. Clin Chem 51 :1778–1785.

    • Search Google Scholar
    • Export Citation
  • 19

    Engelthaler DM, Gage KL, 2000. Quantities of Yersinia pestis in fleas (Siphonaptera: Pulicidae, Ceratophyllidae, and Hystrichopsyllidae) collected from areas of known or suspected plague activity. J Med Entomol 37 :422–426.

    • Search Google Scholar
    • Export Citation
  • 20

    Staggs TM, Perry RD, 1992. Fur regulation in Yersinia species. Mol Microbiol 6 :2507–2516.

  • 21

    Eisen RJ, Bearden SW, Wilder AP, Montenieri JA, Antolin MF, Gage KL, 2006. Early-phase transmission of Yersinia pestis by unblocked fleas as a mechanism explaining rapidly spreading plague epizootics. Proc Natl Acad Sci USA 103 :15380–15385.

    • Search Google Scholar
    • Export Citation
  • 22

    Sulakvelidze A, 2000. Yersiniae other than Y. enterocolitica, Y. pseudotuberculosis, and Y. pestis: the ignored species. Microbes Infect 2 :497–513.

    • Search Google Scholar
    • Export Citation
  • 23

    Loiez C, Herwegh S, Wallet F, Armand S, Guinet F, Courcol RJ, 2003. Detection of Yersinia pestis in sputum by real-time PCR. J Clin Microbiol 41 :4873–4875.

    • Search Google Scholar
    • Export Citation
  • 24

    Higgins JA, Ezzell J, Hinnebusch BJ, Shipley M, Henchal EA, Ibrahim MS, 1998. 5′ Nuclease PCR assay to detect Yersinia pestis. J Clin Microbiol 36 :2284–2288.

    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 179 100 10
PDF Downloads 37 30 9
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Development of a Real-time Quantitative PCR Assay to Enumerate Yersinia pestis in Fleas

View More View Less
  • 1 Centers for Disease Control and Prevention, Division of Vector-Borne Infectious Diseases, Fort Collins, Colorado
Restricted access

A real-time quantitative polymerase chain reaction (qPCR) assay was developed for Yersina pestis. The qPCR assay was developed utilizing a conserved region of the Y. pestis ferric iron uptake regulator gene (fur) to design primers and a fluorescent (FAM-labeled) TaqMan probe. The assay was optimized using cultured Y. pestis (UG05-0454) and was confirmed to work with strains from 3 Y. pestis biovars. The optimized assay was capable of detecting a single organism of cultured Y. pestis and as little as 300 bacteria in infected flea triturates. This qPCR assay enables rapid enumeration of Y. pestis bacterium in laboratory-infected fleas when compared with conventional serial dilution plating.

Save