• 1

    Budke CM, Jiamin Q, Qian W, Torgerson PR, 2005. Economic effects of echinococcosis in a disease-endemic region of the Tibetan Plateau. Am J Trop Med Hyg 73 :2–10.

    • Search Google Scholar
    • Export Citation
  • 2

    Craig PS, Rogan MT, Campos-Ponce M, 2003. Echinococcosis: disease, detection and transmission. Parasitology 127 (Suppl):S5–S20.

  • 3

    Eckert J, Deplazes P, Craig PS, Gemmell MA, Gottstein B, Heath D, Jenkins DJ, Kamiya M, Lightowlers M, 2001. Echinococcosis in animals: clinical aspects, diagnosis and treatment. Eckert J, Gemmell MA, Meslin FX, Pawlowski Z, eds. WHO/ OIE Manual on Echinococcosis in Humans and Animals: A Public Health Problem of Global Concern. Paris: Office International des Epizooties, 72–99.

  • 4

    Allan JC, Craig PS, Garcia Novel J, Mencos F, Liu D, Wang Y, Wen H, Zhou P, Stringer R, Rogan M, Zeyhle E, 1992. Co-proantigen detection for immunodiagnosis of echinococcosis and taeniasis in dogs and humans. Parasitology 104 :347–356.

    • Search Google Scholar
    • Export Citation
  • 5

    Deplazes P, Jimenez-Palacios S, Gottstein B, Skaggs J, Eckert J, 1994. Detection of Echinococcus coproantigens in stray dogs of northern Spain. Appl Parasitol 35 :297–301.

    • Search Google Scholar
    • Export Citation
  • 6

    Malgor R, Nonaka N, Basmadjian I, Sakai H, Carambula B, Oku Y, Carmona C, Kamiya M, 1997. Coproantigen detection in dogs experimentally and naturally infected with Echinococcus granulosus by a monoclonal antibody-based enzyme-linked immunosorbent assay. Int J Parasitol 27 :1605–1612.

    • Search Google Scholar
    • Export Citation
  • 7

    Moro PL, Bonifacio N, Gilman RH, Lopera L, Silva B, Takumoto R, Verastegui M, Cabrera L, 1999. Field diagnosis of Echinococcus granulosus infection among intermediate and definitive hosts in an endemic focus of human cystic echinococcosis. Trans R Soc Trop Med Hyg 93 :611–615.

    • Search Google Scholar
    • Export Citation
  • 8

    Casaravilla C, Malgor R, Rossi A, Sakai H, Nonaka N, Kamiya M, Carmona C, 2005. Production and characterization of monoclonal antibodies against excretory/secretory products of adult Echinococcus granulosus, and their application to co-proantigen detection. Parasitol Int 54 :43–49.

    • Search Google Scholar
    • Export Citation
  • 9

    Jenkins DJ, Romig T, Thompson RCA, 2005. Emergence/re-emergence of Echinococcus spp.-a global update. Int J Parasitol 35 :1205–1219.

  • 10

    McManus DP, 2006. Molecular discrimination of taeniid cestodes. Parasitol Int 55 (Suppl):S31–S37.

  • 11

    Abbasi I, Branzburg A, Campos-Ponce M, Abdel Hafez SK, Raoul F, Craig PS, Hamburger J, 2003. Coprodiagnosis of Echinococcus granulosus infection in dogs by amplification of a newly identified repeated DNA sequence. Am J Trop Med Hyg 69 :324–330.

    • Search Google Scholar
    • Export Citation
  • 12

    Štefanić S, Shaikenov BS, Deplazes P, Dinkel A, Torgerson PR, Mathis A, 2004. Polymerase chain reaction for detection of patent infections of Echinococcus granulosus (“sheep strain”) in naturally infected dogs. Parasitol Res 92 :347–351.

    • Search Google Scholar
    • Export Citation
  • 13

    Dinkel A, Njoroge EM, Zimmermann A, Wälz M, Zeyhle E, Elmahdi IE, Mackenstedt U, Romig T, 2004. A PCR system for detection of species and genotypes of the Echinococcus granulosus-complex, with reference to the epidemiological situation in eastern Africa. Int J Parasitol 34 :645–653.

    • Search Google Scholar
    • Export Citation
  • 14

    Xiao N, Qiu J, Nakao M, Li T, Yang W, Chen X, Schantz PM, Craig PS, Ito A, 2005. Echinococcus shiquicus n. sp., a taeniid cestode from Tibetan fox and plateau pika in China. Int J Parasitol 35 :693–701.

    • Search Google Scholar
    • Export Citation
  • 15

    Bowles J, Blair D, McManus DP, 1995. A molecular phylogeny of the genus Echinococcus. Parasitology 110 :317–328.

  • 16

    Lavikainen A, Lehtinen MJ, Meri T, Hirvelä-Koski V, Meri S, 2003. Molecular genetic characterization of the Fennoscandian cervid strain, a new genotypic group (G10) of Echinococcus granulosus. Parasitology 127 :207–215.

    • Search Google Scholar
    • Export Citation
  • 17

    Dinkel A, von Nickisch-Rosenegk M, Bilger B, Merli M, Lucius R, Romig T, 1998. Detection of Echinococcus multilocularis in the definitive host: coprodiagnosis by PCR as an alternative to necropsy. J Clin Microbiol 36 :1871–1876.

    • Search Google Scholar
    • Export Citation
  • 18

    von Nickisch-Rosenegk M, Silva-Gonzalez R, Lucius R, 1999. Modification of universal 12S rDNA primers for specific amplification of contaminated Taenia spp. (Cestoda) gDNA enabling phylogenetic studies. Parasitol Res 85 :819–825.

    • Search Google Scholar
    • Export Citation
  • 19

    van der Giessen JWB, Rombout YB, Franchimont JH, Limper LP, Homan WL, 1999. Detection of Echinococcus multilocularis in foxes in The Netherlands. Vet Parasitol 82 :49–57.

    • Search Google Scholar
    • Export Citation
  • 20

    Gasser RB, Zhu X, McManus DP, 1999. NADH dehydrogenase subunit 1 and cytochrome c oxidase subunit I sequences compared for members of the genus Taenia (Cestoda). Int J Parasitol 29 :1965–1970.

    • Search Google Scholar
    • Export Citation
  • 21

    Naidich A, McManus DP, Canova SG, Gutierrez AM, Zhang W, Guarnera EA, Rosenzvit MC, 2006. Patent and pre-patent detection of Echinococcus granulosus genotypes in the definitive host. Mol Cell Probes 20 :5–10.

    • Search Google Scholar
    • Export Citation
  • 22

    Rosenzvit MC, Canova SG, Kamenetzky L, Ledesma BA, Guarnera EA, 1997. Echinococcus granulosus: Cloning and characterization of a tandemly repeated DNA element. Exp Parasitol 87 :65–68.

    • Search Google Scholar
    • Export Citation
  • 23

    Kumaratilake LM, Thompson RCA, Dunsmore JD, 1983. Comparative strobilar development of Echinococcus granulosus of sheep origin from different geographical areas of Australia in vivo and in vitro. Int J Parasitol 13 :151–156.

    • Search Google Scholar
    • Export Citation
  • 24

    Yamasaki H, Allan JC, Sato MO, Nakao M, Sako Y, Nakaya K, Qiu D, Mamuti W, Craig PS, Ito A, 2004. DNA differential diagnosis of taeniasis and cysticercosis by multiplex PCR. J Clin Microbiol 42 :548–553.

    • Search Google Scholar
    • Export Citation
  • 25

    Rishi AK, McManus DP, 1987. Genomic cloning of human Echinococcus granulosus DNA: isolation of recombinant plasmids and their use as genetic markers in strain characterization. Parasitology 94 :369–383.

    • Search Google Scholar
    • Export Citation
  • 26

    Kohn M, Knauer F, Stoffella A, Schroder W, Pääbo S, 1995. Conservation genetics of the European brown bear—a study using excremental PCR of nuclear and mitochondrial sequences. Mol Ecol 4 :95–103.

    • Search Google Scholar
    • Export Citation
  • 27

    Romero-Lopez C, Owen RJ, Banatvala N, Abdi Y, Hardie JM, Davies GR, Feldman R, 1993. Comparison of urease gene primer sequences for PCR-based amplification assays in identifying the gastric pathogen Helicobacter pylori. Mol Cell Probes 7 :439–446.

    • Search Google Scholar
    • Export Citation
  • 28

    Chui LW, King R, Lu P, Manninen K, Sim J, 2004. Evaluation of four DNA extraction methods for the detection of Mycobacterium avium subsp. paratuberculosis by polymerase chain reaction. Diagn Microbiol Infect Dis 48 :39–45.

    • Search Google Scholar
    • Export Citation
  • 29

    Tebbe CC, Vahjen W, 1993. Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast. Appl Environ Microbiol 59 :2657–2665.

    • Search Google Scholar
    • Export Citation
  • 30

    McOrist AL, Jackson M, Bird AR, 2002. A comparison of five methods for extraction of bacterial DNA from human faecal samples. J Microbiol Methods 50 :131–139.

    • Search Google Scholar
    • Export Citation
  • 31

    Subrungruang I, Mungthin M, Chavalitshewinkoon-Petmitr P, Rangsin R, Naaglor T, Leelayoova S, 2004. Evaluation of DNA extraction and PCR methods for detection of Enterocytozoon bienuesi in stool specimens. J Clin Microbiol 42 :3490–3494.

    • Search Google Scholar
    • Export Citation
 
 
 

 

 
 
 

 

 

 

 

 

 

Evaluation of Three PCR Assays for the Identification of the Sheep Strain (Genotype 1) of Echinococcus granulosus in Canid Feces and Parasite Tissues

View More View Less
  • 1 Biomedical Sciences Research Institute, University of Salford, United Kingdom; Department of Infectious Diseases, Institute for Health Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Departamento de Parasitología, Instituto Nacional de Enfermedades Infecciosas, Capital Federal, Argentina; El-Fateh University, Tripoli, Libya; Service de Parasitologie, École Nationale de Médecine Vétérinaire, Tunisia; Hydatid Unit, African Medical and Research Foundation, Nairobi, Kenya; Australian Hydatid Control and Epidemiology Program, Fyshwick, Australia; Entente Interdepartementale de Lutte Contre la Rage et Autres Zoonoses, Malzeville, France; First Teaching Hospital, Xinjiang Medical University, Urumqi, Xinjiang, China; Department of Parasitology, Asahikawa Medical College, Asahikawa, Japan; Institute of Parasitic Diseases, Sichuan Centre for Disease Control and Prevention, Chengdu, Sichuan, China

The performance of 3 PCR assays for the identification of the G1 sheep genotype of Echinococcus granulosus was evaluated using tissue and canid fecal samples. The “Dinkel” and “Štefanić” primers were the most sensitive in detecting E. granulosus DNA in feces of necropsied dogs (73.7% and 100%, respectively). The “Abbasi” primers detected 52.6% of E. granulosus infected dogs but were the most species-specific, cross-reacting only with Echinococcus shiquicus (tissue 90.9%; feces 75%). The Štefanić primers were the least specific (tissue, 27.3%; feces, 25%) for E. granulosus. The Dinkel primers also showed inter-species cross-reactivity (tissue, 63.6%; feces, 100%) but were found to be strain-specific for the E. granulosus G1 sheep genotype. Improvement of PCR tests for Echinococcus species and subspecific variants should rely on the use of less-conserved genes and development of protocols that improve the quality and quantity of DNA extracted from feces.

Author Notes

Reprint requests: Belgees S. Boufana, Biomedical Sciences Research Institute, University of Salford, United Kingdom, Tel: 44-0161-295 4299, Fax: 44-0161-295 5129, E-mail: B.Boufana@salford.ac.uk.
Save