Reduced Risk of Uncomplicated Malaria Episodes in Children with Alpha+-Thalassemia in Northeastern Tanzania

Anders Enevold Centre for Medical Parasitology, Institute for International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; National Institute for Medical Research, Tanga Medical Research Centre, Tanga, Tanzania; Department of Epidemiology, Statens Serum Institute, Copenhagen, Denmark

Search for other papers by Anders Enevold in
Current site
Google Scholar
PubMed
Close
,
John P. Lusingu Centre for Medical Parasitology, Institute for International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; National Institute for Medical Research, Tanga Medical Research Centre, Tanga, Tanzania; Department of Epidemiology, Statens Serum Institute, Copenhagen, Denmark

Search for other papers by John P. Lusingu in
Current site
Google Scholar
PubMed
Close
,
Bruno Mmbando Centre for Medical Parasitology, Institute for International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; National Institute for Medical Research, Tanga Medical Research Centre, Tanga, Tanzania; Department of Epidemiology, Statens Serum Institute, Copenhagen, Denmark

Search for other papers by Bruno Mmbando in
Current site
Google Scholar
PubMed
Close
,
Michael Alifrangis Centre for Medical Parasitology, Institute for International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; National Institute for Medical Research, Tanga Medical Research Centre, Tanga, Tanzania; Department of Epidemiology, Statens Serum Institute, Copenhagen, Denmark

Search for other papers by Michael Alifrangis in
Current site
Google Scholar
PubMed
Close
,
Martha M. Lemnge Centre for Medical Parasitology, Institute for International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; National Institute for Medical Research, Tanga Medical Research Centre, Tanga, Tanzania; Department of Epidemiology, Statens Serum Institute, Copenhagen, Denmark

Search for other papers by Martha M. Lemnge in
Current site
Google Scholar
PubMed
Close
,
Ib C. Bygbjerg Centre for Medical Parasitology, Institute for International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; National Institute for Medical Research, Tanga Medical Research Centre, Tanga, Tanzania; Department of Epidemiology, Statens Serum Institute, Copenhagen, Denmark

Search for other papers by Ib C. Bygbjerg in
Current site
Google Scholar
PubMed
Close
,
Thor G. Theander Centre for Medical Parasitology, Institute for International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; National Institute for Medical Research, Tanga Medical Research Centre, Tanga, Tanzania; Department of Epidemiology, Statens Serum Institute, Copenhagen, Denmark

Search for other papers by Thor G. Theander in
Current site
Google Scholar
PubMed
Close
, and
Lasse S. Vestergaard Centre for Medical Parasitology, Institute for International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; National Institute for Medical Research, Tanga Medical Research Centre, Tanga, Tanzania; Department of Epidemiology, Statens Serum Institute, Copenhagen, Denmark

Search for other papers by Lasse S. Vestergaard in
Current site
Google Scholar
PubMed
Close
Restricted access

The prevalence of human red blood cell (RBC) polymorphisms is high in areas of intense Plasmodium falciparum transmission, and individuals carrying these genetic traits are believed to be partially protected against severe malaria. However, it remains uncertain how RBC polymorphisms affect the susceptibility to uncomplicated malaria. We compared the risk of suffering from febrile, uncomplicated malaria between individuals carrying three common RBC polymorphisms (sickle cell trait, alpha+-thalassemia, and glucose-6-phosphate-dehydrogenase deficiency) and controls. The study was performed in an area of intense malaria transmission where 202 individuals 0–19 years of age were monitored clinically for a period of 6 months. RBC polymorphisms were assessed with molecular methods, and plasma antibodies to P. falciparum variant surface antigens (anti-VSA IgG) and glutamate-rich protein (anti-GLURP IgG) were measured with flow cytometry and ELISA assays, respectively. Regression analyses showed that alpha+-thalassemia was associated with a reduced risk of uncomplicated malaria episodes and that this advantageous effect seemed to be more predominant in children older than 5 years of age, but was independent of levels of antibodies to VSA and GLURP.

  • 1

    Mcgregor IA, 1987. Malarial immunity—current trends and prospects. Ann Trop Med Parasitol 81 :647–656.

  • 2

    Allison AC, 1964. Polymorphism and natural selection in human populations. Cold Spring Harb Symp Quant Biol 29 :137–149.

  • 3

    Flint J, Hill AVS, Bowden DK, Oppenheimer SJ, Sill PR, Serjeantson SW, Banakoiri J, Bhatia K, Alpers MP, Boyce AJ, Weatherall DJ, Clegg JB, 1986. High-frequencies of alpha-thalassemia are the result of natural-selection by malaria. Nature 321 :744–750.

    • Search Google Scholar
    • Export Citation
  • 4

    Ruwende C, Khoo SC, Snow AW, Yates SNR, Kwiatkowski D, Gupta S, Warn P, Allsopp CEM, Gilbert SC, Peschu N, Newbold CI, Greenwood BM, Marsh K, Hill AVS, 1995. Natural-selection of hemizygotes and heterozygotes for G6PD deficiency in Africa by resistance to severe malaria. Nature 376 :246–249.

    • Search Google Scholar
    • Export Citation
  • 5

    Beutler E, 1991. Glucose-6-phosphate-dehydrogenase deficiency. N Engl J Med 324 :169–174.

  • 6

    Weatherall DJ, Clegg JB, 2001. Inherited haemoglobin disorders: an increasing global health problem. Bull WHO 79 :704–712.

  • 7

    Aidoo M, Terlouw DJ, Kolczak M, McElroy PD, ter Kuile FO, Kariuki S, Nahlen BL, Lal AA, Udhayakumar V, 2002. Protective effects of the sickle cell gene against malaria morbidity and mortality. Lancet 359 :1311–1312.

    • Search Google Scholar
    • Export Citation
  • 8

    Mockenhaupt FP, Ehrhardt S, Gellert S, Otchwemah RN, Dietz E, Anemana SD, Bienzle U, 2004. alpha(+)-thalassemia protects African children from severe malaria. Blood 104 :2003–2006.

    • Search Google Scholar
    • Export Citation
  • 9

    Williams TN, Wambua S, Uyoga S, Macharia A, Mwacharo JK, Newton CRJC, Maitland K, 2005. Both heterozygous and homozygous alpha(+) thalassemias protect against severe and fatal Plasmodium falciparum malaria on the coast of Kenya. Blood 106 :368–371.

    • Search Google Scholar
    • Export Citation
  • 10

    Allison AC, 1954. Protection afforded by sickle-cell trait against subtertian malarial infection. BMJ 1 :290–294.

  • 11

    Hill AVS, Allsopp CEM, Kwiatkowski D, Anstey NM, Twumasi P, Rowe PA, Bennett S, Brewster D, Mcmichael AJ, Greenwood BM, 1991. Common West African Hla antigens are associated with protection from severe malaria. Nature 352 :595–600.

    • Search Google Scholar
    • Export Citation
  • 12

    Williams TN, Mwangi TW, Wambua S, Alexander ND, Kortok M, Snow RW, Marsh K, 2005. Sickle cell trait and the risk of Plasmodium falciparum malaria and other childhood diseases. J Infect Dis 192 :178–186.

    • Search Google Scholar
    • Export Citation
  • 13

    Guindo A, Fairhurst RM, Doumbo O, Wellems TE, Diallo D, 2007. X-linked G6PD deficiency protects hemizygous males but not heterozygous females against severe malaria. PLoS Med 4 :e66.

    • Search Google Scholar
    • Export Citation
  • 14

    Wambua S, Mwangi TW, Kortok M, Uyoga S, Macharia AW, Mwacharo JK, Weatherall DJ, Snow RW, Marsh K, Williams TN, 2006. The effect of alpha+ thalassaemia on the incidence of malaria and other diseases in children living on the coast of Kenya. PLoS Med 3 :e158.

    • Search Google Scholar
    • Export Citation
  • 15

    Williams TN, Maitland K, Bennett S, Ganczakowski M, Peto TEA, Newbold CI, Bowden DK, Weatherall DJ, Clegg JB, 1996. High incidence of malaria in alpha-thalassaemic children. Nature 383 :522–525.

    • Search Google Scholar
    • Export Citation
  • 16

    Oppenheimer SJ, Hill AVS, Gibson FD, Macfarlane SB, Moody JB, Pringle J, 1987. The interaction of alpha-Thalassemia with malaria. Trans R Soc Trop Med Hyg 81 :322–326.

    • Search Google Scholar
    • Export Citation
  • 17

    Roth EF, Raventossuarez C, Rinaldi A, Nagel RL, 1983. Glucose-6-phosphate-dehydrogenase deficiency inhibits in vitro growth of Plasmodium falciparum.Proc Natl Acad Sci USA 80 :298–299.

    • Search Google Scholar
    • Export Citation
  • 18

    Pasvol G, Weatherall DJ, Wilson RJM, 1978. Cellular mechanism for protective effect of haemoglobin-S against P. falciparum malaria. Nature 274 :701–703.

    • Search Google Scholar
    • Export Citation
  • 19

    Cappadoro M, Giribaldi G, O’Brien E, Turrini F, Mannu F, Ulliers D, Simula G, Luzzatto L, Arese P, 1998. Early phagocytosis of glucose-6-phosphate dehydrogenase (G6PD)-deficient erythrocytes parasitized by Plasmodium falciparum may explain malaria protection in G6PD deficiency. Blood 92 :2527–2534.

    • Search Google Scholar
    • Export Citation
  • 20

    Ayi K, Turrini F, Piga A, Arese P, 2004. Enhanced phagocytosis of ring-parasitized mutant erythrocytes: a common mechanism that may explain protection against falciparum malaria in sickle trait and beta-thalassemia trait. Blood 104 :3364–3371.

    • Search Google Scholar
    • Export Citation
  • 21

    Luzzi GA, Merry AH, Newbold CI, Marsh K, Pasvol G, 1991. Protection by alpha-thalassemia against Plasmodium falciparum malaria—modified surface-antigen expression rather than impaired growth or cytoadherence. Immunol Lett 30 :233–240.

    • Search Google Scholar
    • Export Citation
  • 22

    Marsh K, Otoo L, Hayes RJ, Carson DC, Greenwood BM, 1989. Antibodies to blood stage antigens of Plasmodium falciparum in rural Gambians and their relation to protection against infection. Trans R Soc Trop Med Hyg 83 :293–303.

    • Search Google Scholar
    • Export Citation
  • 23

    Pasvol G, 1992. A cellular mechanism for the protection by thalassemia against Plasmodium falciparum malaria. Br J Haematol 82 :267.

  • 24

    Bayoumi RA, Abuzeid YA, Abdulhadi NH, Saeed BO, Theander TG, Hviid L, Ghalib HW, Nugud AHD, Jepsen S, Jensen JB, 1990. Cell-mediated immune-responses to Plasmodium falciparum purified soluble antigens in sickle-cell trait subjects. Immunol Lett 25 :243–250.

    • Search Google Scholar
    • Export Citation
  • 25

    Arie T, Fairhurst RM, Brittain NJ, Wellems TE, Dvorak JA, 2005. Hemogloblin C modulates the surface topography of Plasmodium falciparum-infected erythrocytes. J Struct Bio 150 :163–169.

    • Search Google Scholar
    • Export Citation
  • 26

    Verra F, Simpore J, Warimwe GM, Tetteh KK, Howard TOF, Bancone G, Avellino P, Blot I, Fegan G, Bull PC, Williams TN, Conway DJ, Marsh K, Modiano D, 2007. Haemoglobin C and S role in acquired immunity against Plasmodium falciparum malaria. PloS One e978.

    • Search Google Scholar
    • Export Citation
  • 27

    Cabrera G, Cot M, Migot-Nabias F, Kremsner PG, Deloron P, Luty AJF, 2005. The sickle cell trait is associated with enhanced immunoglobulin G antibody responses to Plasmodium falciparum variant surface antigens. J Infect Dis 191 :1631–1638.

    • Search Google Scholar
    • Export Citation
  • 28

    Jakobsen PH, Riley EM, Allen SJ, Larsen SO, Bennett S, Jepsen S, Greenwood BM, 1991. Differential antibody-response of Gambian donors to soluble Plasmodium falciparum antigens. Trans R Soc Trop Med Hyg 85 :26–32.

    • Search Google Scholar
    • Export Citation
  • 29

    Allen SJ, Bennett S, Riley EM, Rowe PA, Jakobsen PH, Odonnell A, Greenwood BM, 1992. Morbidity from malaria and immune-responses to defined Plasmodium falciparum antigens in children with sickle-cell trait in the Gambia. Trans R Soc Trop Med Hyg 86 :494–498.

    • Search Google Scholar
    • Export Citation
  • 30

    Le Hesran JY, Personne I, Personne P, Fievet N, Dubois B, Beyeme M, Boudin C, Cot M, Deloron P, 1999. Longitudinal study of Plasmodium falciparum infection and immune responses in infants with or without the sickle cell trait. Int J Epidemiol 28 :793–798.

    • Search Google Scholar
    • Export Citation
  • 31

    Maya DWM, Mavoungou E, Deloron P, Theisen M, Ntoumi F, 2006. Distribution of IgG subclass antibodies specific for Plasmodium falciparum glutamate-rich-protein molecule in sickle cell trait children with asymptomatic infections. Exp Parasitol 112 :92–98.

    • Search Google Scholar
    • Export Citation
  • 32

    Ntoumi F, Ekala MT, Makuwa M, Lekoulou F, Mercereau-Puijalon O, Deloron P, 2002. Sickle cell trait carriage: imbalanced distribution of IgG subclass antibodies reactive to Plasmodium falciparum family-specific MSP2 peptides in serum samples from Gabonese children. Immunol Lett 84 :9–16.

    • Search Google Scholar
    • Export Citation
  • 33

    Sarr JB, Pelleau S, Toly C, Guitard J, Konate L, Deloron P, Garcia A, Migot-Nabias F, 2006. Impact of red blood cell polymorphisms on the antibody response to Plasmodium falciparum in Senegal. Microbes Infect 8 :1260–1268.

    • Search Google Scholar
    • Export Citation
  • 34

    Lusingu JPA, Vestergaard LS, Mmbando BP, Drakeley CJ, Jones C, Akida J, Savaeli ZX, Kitua AY, Lemnge MM, Theander TG, 2004. Malaria morbidity and immunity among residents of villages with different Plasmodium falciparum transmission intensity in North-Eastern Tanzania. Malar J 3 :26.

    • Search Google Scholar
    • Export Citation
  • 35

    Pearce RJ, Drakeley C, Chandramohan D, Mosha F, Roper C, 2003. Molecular determination of point mutation haplotypes in the dihydrofolate reductase and dihydropteroate synthase of Plasmodium falciparum in three districts of northern Tanzania. Antimicrob Agents Chemo 47 :1347–1354.

    • Search Google Scholar
    • Export Citation
  • 36

    Enevold A, Vestergaard LS, Lusingu J, Drakeley CJ, Lemnge MM, Theander TG, Bygbjerg IC, Alifrangis M, 2005. Rapid screening for glucose-6-phosphate dehydrogenase deficiency and haemoglobin polymorphisms in Africa by a simple high-throughput SSOP-ELISA method. Malar J 4 :61.

    • Search Google Scholar
    • Export Citation
  • 37

    Liu YT, Old JM, Miles K, Fisher CA, Weatherall DJ, Clegg JB, 2000. Rapid detection of alpha-thalassaemia deletions and alpha-globin gene triplication by multiplex polymerase chain reactions. Br J Haematol 108 :295–299.

    • Search Google Scholar
    • Export Citation
  • 38

    Lusingu JPA, Vestergaard LS, Alifrangis M, Mmbando BP, Theisen M, Kitua AY, Lemnge MM, Theander TG, 2005. Cytophilic antibodies to Plasmodium falciparum glutamate rich protein are associated with malaria protection in an area of holoendemic transmission. Malar J 4 :48.

    • Search Google Scholar
    • Export Citation
  • 39

    Staalsoe T, Giha HA, Dodoo D, Theander TG, Hviid L, 1999. Detection of antibodies to variant antigens on Plasmodium falciparum- infected erythrocytes by flow cytometry. Cytometry 35 :329–336.

    • Search Google Scholar
    • Export Citation
  • 40

    Mockenhaupt FP, Falusi AG, May J, Ademowo OG, Olumese PE, Meyer CG, Bienzle U, 1999. The contribution of alpha(+)-thalassaemia to anaemia in a Nigerian population exposed to intense malaria transmission. Trop Med Int Health 4 :302–307.

    • Search Google Scholar
    • Export Citation
  • 41

    Modiano G, Morpurgo G, Terrenato L, Novelletto A, Dirienzo A, Colombo B, Purpura M, Mariani M, Santachiarabenerecetti S, Brega A, Dixit KA, Shrestha SL, Lania A, Wanachiwanawin W, Luzzatto L, 1991. Protection against malaria morbidity—near-fixation of the alpha-thalassemia gene in a Nepalese population. Am J Hum Genet 48 :390–397.

    • Search Google Scholar
    • Export Citation
  • 42

    Allen SJ, O’Donnell A, Alexander NDE, Alpers MP, Peto TEA, Clegg JB, Weatherall DJ, 1997. Alpha(+)-thalassemia protects children against disease caused by other infections as well as malaria. Proc Natl Acad Sci USA 94 :14736–14741.

    • Search Google Scholar
    • Export Citation
  • 43

    Williams TN, Mwangi TW, Roberts DJ, Alexander ND, Weatherall DJ, Wambua S, Kortok M, Snow RW, Marsh K, 2005. An immune basis for malaria protection by the sickle cell trait. PLoS Med 2 :441–445.

    • Search Google Scholar
    • Export Citation
  • 44

    Dodoo D, Theisen M, Kurtzhals JAL, Akanmori BD, Koram KA, Jepsen S, Nkrumah FK, Theander TG, Hviid L, 2000. Naturally acquired antibodies to the glutamate-rich protein are associated with protection against Plasmodium falciparum malaria. J Infect Dis 181 :1202–1205.

    • Search Google Scholar
    • Export Citation
  • 45

    Bull PC, Lowe BS, Kortok M, Molyneux CS, Newbold CI, Marsh K, 1998. Parasite antigens on the infected red cell surface are targets for naturally acquired immunity to malaria. Nat Med 4 :358–360.

    • Search Google Scholar
    • Export Citation
  • 46

    Oeuvray C, Theisen M, Rogier C, Trape JF, Jepsen S, Druilhe P, 2000. Cytophilic immunoglobulin responses to Plasmodium falciparum glutamate-rich protein are correlated with protection against clinical malaria in Dielmo, Senegal. Infect Immun 68 :2617–2620.

    • Search Google Scholar
    • Export Citation
  • 47

    Marsh K, Howard RJ, 1986. Antigens induced on erythrocytes by P. falciparum: expression of diverse and conserved determinants. Science 231 :150–153.

    • Search Google Scholar
    • Export Citation
  • 48

    Bull PC, Marsh K, 2002. The role of antibodies to Plasmodium falciparum-infected-erythrocyte surface antigens in naturally acquired immunity to malaria. Trends Microbiol 10 :55–58.

    • Search Google Scholar
    • Export Citation
  • 49

    Urban BC, Shafi MJ, Cordery DV, Macharia A, Lowe B, Marsh K, Williams TN, 2006. Frequencies of peripheral blood myeloid cells in healthy Kenyan children with alpha+ thalassemia and the sickle cell trait. Am J Trop Med Hyg 74 :578–584.

    • Search Google Scholar
    • Export Citation
  • 50

    Enevold A, Alifrangis M, Sanchez J, Carneiro I, Roper C, Børsting C, Lusingu J, Vestergaard L, Lemnge M, Morling N, Riley E, Drakeley C, 2007. Associations between alpha +-Thalassemia and Plasmodium falciparum Malarial Infection in Northeastern Tanzania. J Infect Dis 196 :451–459.

    • Search Google Scholar
    • Export Citation
  • 51

    Williams TN, Mwangi TW, Wambua S, Peto TEA, Weatherall DJ, Gupta S, Recker M, Penman BS, Uyoga S, Macharia A, Mwacharo JK, Snow RW, Marsh K, 2005. Negative epistasis between the malaria-protective effects of alpha(+)-thalassemia and the sickle cell trait. Nat Gen 37 :1253–1257.

    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 29 29 9
Full Text Views 285 136 2
PDF Downloads 53 16 1
 
Membership Banner
 
 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save