Dynamics of Asymptomatic Plasmodium vivax Infections and Duffy Binding Protein Polymorphisms in Relation to Parasitemia Levels in Papua New Guinean Children

Jennifer L. Cole-Tobian Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio; Veteran’s Affairs Medical Center, Cleveland, Ohio; Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea

Search for other papers by Jennifer L. Cole-Tobian in
Current site
Google Scholar
PubMed
Close
,
Pascal Michon Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio; Veteran’s Affairs Medical Center, Cleveland, Ohio; Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea

Search for other papers by Pascal Michon in
Current site
Google Scholar
PubMed
Close
,
Elijah Dabod Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio; Veteran’s Affairs Medical Center, Cleveland, Ohio; Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea

Search for other papers by Elijah Dabod in
Current site
Google Scholar
PubMed
Close
,
Ivo Mueller Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio; Veteran’s Affairs Medical Center, Cleveland, Ohio; Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea

Search for other papers by Ivo Mueller in
Current site
Google Scholar
PubMed
Close
, and
Christopher L. King Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio; Veteran’s Affairs Medical Center, Cleveland, Ohio; Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea

Search for other papers by Christopher L. King in
Current site
Google Scholar
PubMed
Close
Restricted access

The interaction between Plasmodium vivax Duffy binding protein II (PvDBPII) and human erythrocyte Duffy antigen is necessary for blood stage infections. However, PvDBPII is highly polymorphic. We recently observed that certain recombinant DBPII variants bind better to erythrocytes in vitro. To examine the hypothesis that haplotypes with enhanced binding have increased parasitemia levels, we followed 206 Papua New Guinean children biweekly for six months with a total of 713 P. vivax samples genotyped. Twenty-seven PvDBPII haplotypes were identified, and 3 haplotypes accounted for 57% of the infections. The relative frequencies of dominant haplotypes remained stable throughout the study. There was no significant association with PvDBPII alleles or haplotypes with P. vivax parasitemia. The dominant haplotype (26% of samples), however, corresponded to a high-binding haplotype. Thus, common haplotypes are not likely to have arisen from increased fitness as measured by greater parasitemia levels. The restricted number of common haplotypes increases the feasibility of a PvDBPII-based vaccine.

Author Notes

Reprint requests: Christopher L. King, Center for Global Health and Disease, Case Western Reserve University, Wolstein Research Building 4-132, 10900 Euclid Avenue, Cleveland, OH 44106 and Research Department, Veterans Affairs Medical Center, 10701 East Boulevard, Cleveland, OH 44106, Telephone: 216-368-4817, Fax: 216-368-4825, E-mail: christopher.king@case.edu.
  • 1

    Mendis K, Sina BJ, Marchesini P, Carter R, 2001. The neglected burden of Plasmodium vivax malaria. Am J Trop Med Hyg 64 :97–106.

  • 2

    Beg MA, Khan R, Baig SM, Gulzar Z, Hussain R, Smego RA Jr, 2002. Cerebral involvement in benign tertian malaria. Am J Trop Med Hyg 67 :230–232.

  • 3

    Kochar DK, Saxena V, Singh N, Kochar SK, Kumar SV, Das A, 2005. Plasmodium vivax malaria. Emerg Infect Dis 11 :132–134.

  • 4

    Barnwell JW, Galinski MR, 1995. Plasmodium vivax: a glimpse into the unique and shared biology of the merozoite. Ann Trop Med Parasitol 89 :113–120.

  • 5

    Chitnis CE, 2001. Molecular insights into receptors used by malaria parasites for erythrocyte invasion. Curr Opin Hematol 8 :85–91.

  • 6

    Horuk R, Chitnis CE, Darbonne WC, Colby TJ, Rybicki A, Hadley TJ, Miller LH, 1993. A receptor for the malarial parasite Plasmodium vivax: the erythrocyte chemokine receptor. Science 261 :1182–1184.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7

    Miller LH, Mason SJ, Clyde DF, McGinniss MH, 1976. The resistance factor to Plasmodium vivax in blacks. The Duffy-blood-group. N Engl J Med 295 :302–304.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8

    Wertheimer SP, Barnwell JW, 1989. Plasmodium vivax interaction with the human Duffy blood group glycoprotein: identification of a parasite receptor-like protein. Exp Parasitol 69 :340–350.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9

    Cole-Tobian J, King CL, 2003. Diversity and natural selection in Plasmodium vivax Duffy binding protein gene. Mol Biochem Parasitol 127 :121–132.

  • 10

    Martinez P, Suarez CF, Cardenas PP, Patarroyo MA, 2004. Plasmodium vivax Duffy binding protein: a modular evolutionary proposal. Parasitology 128 :353–366.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11

    Cole-Tobian J, Cortes A, Baisor M, Kastens W, Xainli J, Bockarie M, Adams J, King C, 2002. Age-acquired immunity to a Plasmodium vivax invasion ligand, the Duffy binding protein. J Infect Dis 186 :531–539.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12

    Michon P, Cole-Tobian JL, Dabod E, Schoepflin S, Igu J, Susapu M, Tarongka N, Zimmerman PA, Reeder JC, Beeson JG, Schofield L, King CL, Mueller I, 2007. The risk of malarial infections and disease in Papua New Guinean children. Am J Trop Med Hyg 76 :997–1008.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13

    McNamara DT, Kasehagen LJ, Grimberg BT, Cole-Tobian J, Collins WE, Zimmerman PA, 2006. Diagnosing infection levels of four human malaria parasite species by a polymerase chain reaction/ligase detection reaction fluorescent micro-sphere-based assay. Am J Trop Med Hyg 74 :413–421.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14

    McNamara DT, Thomson JM, Kasehagen LJ, Zimmerman PA, 2004. Development of a multiplex PCR-ligase detection reaction assay for diagnosis of infection by the four parasite species causing malaria in humans. J Clin Microbiol 42 :2403–2410.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15

    Mehlotra RK, Kasehagen LJ, Baisor M, Lorry K, Kazura JW, Bockarie MJ, Zimmerman PA, 2002. Malaria infections are randomly distributed in diverse holoendemic areas of Papua New Guinea. Am J Trop Med Hyg 67 :555–562.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16

    Perandin F, Manca N, Calderaro A, Piccolo G, Galati L, Ricci L, Medici MC, Arcangeletti MC, Snounou G, Dettori G, Chezzi C, 2004. Development of a real-time PCR assay for detection of Plasmodium falciparum, Plasmodium vivax, and Plasmodium ovale for routine clinical diagnosis. J Clin Microbiol 42 :1214–1219.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17

    Cole-Tobian JL, Zimmerman PA, King CL, 2007. High throughput identification of the predominant malaria clone in complex blood stage infections using a multi-SNP molecular haplotyping assay. Am J Trop Med Hyg 76 :12–19.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    Kumar S, Tamura K, Nei M, 2004. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5 :150–163.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19

    Saitou N, Nei M, 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4 :406–425.

  • 20

    McElroy PD, Lal AA, Hawley WA, Bloland PB, Kuile FO, Oloo AJ, Harlow SD, Lin X, Nahlen BL, 1999. Analysis of repeated hemoglobin measures in full-term, normal birth weight Kenyan children between birth and four years of age. III. The Asemobo Bay Cohort Project. Am J Trop Med Hyg 61 :932–940.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21

    Kho WG, Chung JY, Sim EJ, Kim DW, Chung WC, 2001. Analysis of polymorphic regions of Plasmodium vivax Duffy binding protein of Korean isolates. Korean J Parasitol 39 :143–150.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22

    Ampudia E, Patarroyo MA, Patarroyo ME, Murillo LA, 1996. Genetic polymorphism of the Duffy receptor binding domain of Plasmodium vivax in Colombian wild isolates. Mol Biochem Parasitol 78 :269–272.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23

    Tsuboi T, Kappe SH, Al-Yaman F, Prickett MD, Alpers M, Adams JH, 1994. Natural variation within the principal adhesion domain of the Plasmodium vivax Duffy binding protein. Infect Immun 62 :5581–5586.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24

    Cole-Tobian J, Biasor M, King CL, 2005. High complexity of Plasmodium vivax infections in Papua New Guinean children. Am J Trop Med Hyg 73 :626–633.

  • 25

    Singh SK, Hora R, Belrhali H, Chitnis CE, Sharma A, 2006. Structural basis for Duffy recognition by the malaria parasite Duffy-binding-like domain. Nature 439 :741–744.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    Hans D, Pattnaik P, Bhattacharyya A, Shakri AR, Yazdani SS, Sharma M, Choe H, Farzan M, Chitnis CE, 2005. Mapping binding residues in the Plasmodium vivax domain that binds Duffy antigen during red cell invasion. Mol Microbiol 55 :1423–1434.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27

    VanBuskirk KM, Sevova E, Adams JH, 2004. Conserved residues in the Plasmodium vivax Duffy-binding protein ligand domain are critical for erythrocyte receptor recognition. Proc Natl Acad Sci U S A 101 :15754–15759.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28

    Xainli J, Adams JH, King CL, 2000. The erythrocyte binding motif of Plasmodium vivax Duffy binding protein is highly polymorphic and functionally conserved in isolates from Papua New Guinea. Mol Biochem Parasitol 111 :253–260.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29

    Bruce MC, Galinski MR, Barnwell JW, Snounou G, Day KP, 1999. Polymorphism at the merozoite surface protein-3alpha locus of Plasmodium vivax: global and local diversity. Am J Trop Med Hyg 61 :518–525.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30

    Bruce MC, Galinski MR, Barnwell JW, Donnelly CA, Walmsley M, Alpers MP, Walliker D, Day KP, 2000. Genetic diversity and dynamics of Plasmodium falciparum and P. vivax populations in multiply infected children with asymptomatic malaria infections in Papua New Guinea. Parasitology 121 :257–272.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31

    Fluck C, Schopflin S, Smith T, Genton B, Alpers MP, Beck HP, Felger I, 2007. Effect of the malaria vaccine Combination B on merozoite surface antigen 2 diversity. Infect Genet Evol 7 :44–51.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32

    Takala SL, Smith DL, Stine OC, Coulibaly D, Thera MA, Doumbo OK, Plowe CV, 2006. A high-throughput method for quantifying alleles and haplotypes of the malaria vaccine candidate Plasmodium falciparum merozoite surface protein-1 19 kDa. Malar J 5 :31.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33

    Conway DJ, Greenwood BM, McBride JS, 1992. Longitudinal study of Plasmodium falciparum polymorphic antigens in a malaria-endemic population. Infect Immun 60 :1122–1127.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34

    Babiker HA, Satti G, Walliker D, 1995. Genetic changes in the population of Plasmodium falciparum in a Sudanese village over a three-year period. Am J Trop Med Hyg 53 :7–15.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35

    Babiker HA, 1998. Unstable malaria in Sudan: the influence of the dry season. Plasmodium falciparum population in the un-stable malaria area of eastern Sudan is stable and genetically complex. Trans R Soc Trop Med Hyg 92 :585–589.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36

    Zhang S, Pakstis AJ, Kidd KK, Zhao H, 2001. Comparisons of two methods for haplotype reconstruction and haplotype frequency estimation from population data. Am J Hum Genet 69 :906–914.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37

    Stephens M, Donnelly P, 2003. A comparison of bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 73 :1162–1169.

  • 38

    Golenda CF, Li J, Rosenberg R, 1997. Continuous in vitro propagation of the malaria parasite Plasmodium vivax. Proc Natl Acad Sci U S A 94 :6786–6791.

  • 39

    Chotivanich K, Silamut K, Udomsangpetch R, Stepniewska KA, Pukrittayakamee S, Looareesuwan S, White NJ, 2001. Ex-vivo short-term culture and developmental assessment of Plasmodium vivax. Trans R Soc Trop Med Hyg 95 :677–680.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40

    Barnwell JW, Nichols ME, Rubinstein P, 1989. In vitro evaluation of the role of the Duffy blood group in erythrocyte invasion by Plasmodium vivax. J Exp Med 169 :1795–1802.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41

    Bull PC, Marsh K, 2001. The role of antibodies to Plasmodium falciparum-infected-erythrocyte surface antigens in naturally acquired immunity to malaria. Trends Microbiol 10 :55–58.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42

    Karunaweera ND, Ferreira M, Hartl DL, Wirth DF, 2007. Fourteen polymorphic microsatellite DNA markers for the human malaria parasite Plasomodium vivax. Mol Ecol Notes 7 :172–175.

    • PubMed
    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 104 94 1
Full Text Views 69 0 0
PDF Downloads 9 0 0
 
 
 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save