• 1

    Barral A, Barral-Netto M, Almeida R, de Jesus AR, Grimaldi Junior G, Netto EM, Santos I, Bacellar O, Carvalho EM, 1992. Lymphadenopathy associated with Leishmania braziliensis cutaneous infection. Am J Trop Med Hyg 47 :587–592.

    • Search Google Scholar
    • Export Citation
  • 2

    Barral A, Guerreiro J, Bomfim G, Correia D, Barral-Netto M, Carvalho EM, 1995. Lymphadenopathy as the first sign of human cutaneous infection by Leishmania braziliensis. Am J Trop Med Hyg 53 :256–259.

    • Search Google Scholar
    • Export Citation
  • 3

    Sousa Ade Q, Parise ME, Pompeu MM, Coehlo Filho JM, Vasconcelos IA, Lima JW, Oliveira EG, Vasconcelos AW, David JR, Maguire JH, 1995. Bubonic leishmaniasis: a common manifestation of Leishmania (Viannia) braziliensis infection in Ceara, Brazil. Am J Trop Med Hyg 53 :380–385.

    • Search Google Scholar
    • Export Citation
  • 4

    Azadeh B, 1985. “Localized” Leishmania lymphadenitis: a light and electron microscopic study. Am J Trop Med Hyg 34 :447–455.

  • 5

    Berger TG, Meltzer MS, Oster CN, 1985. Lymph node involvement in leishmaniasis. J Am Acad Dermatol 12 :993–996.

  • 6

    al-Gindan Y, Kubba R, el-Hassan AM, Omer AH, Kutty MK, Saeed MB, 1989. Dissemination in cutaneous leishmaniasis. 3. Lymph node involvement. Int J Dermatol 28 :248–254.

    • Search Google Scholar
    • Export Citation
  • 7

    Moraes MA, Correia Filho D, Santos JB, 1993. Lymphadenopathies in American cutaneous leishmaniasis: comments on 2 cases. Rev Soc Bras Med Trop 26 :181–185.

    • Search Google Scholar
    • Export Citation
  • 8

    Reed SG, Badaro R, Masur H, Carvalho EM, Lorenco R, Lisboa A, Teixeira R, Johnson WD Jr, Jones TC, 1986. Selection of a skin test antigen for American visceral leishmaniasis. Am J Trop Med Hyg 35 :79–85.

    • Search Google Scholar
    • Export Citation
  • 9

    Moll H, Fuchs H, Blank C, Rollinghoff M, 1993. Langerhans cells transport Leishmania major from the infected skin to the draining lymph node for presentation to antigen-specific T cells. Eur J Immunol 23 :1595–1601.

    • Search Google Scholar
    • Export Citation
  • 10

    Sacks D, Noben-Trauth N, 2002. The immunology of susceptibility and resistance to Leishmania major in mice. Nat Rev Immunol 2 :845–858.

    • Search Google Scholar
    • Export Citation
  • 11

    Nathan CF, Murray HW, Wiebe ME, Rubin BY, 1983. Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J Exp Med 158 :670–689.

    • Search Google Scholar
    • Export Citation
  • 12

    Grimaldi G Jr, David JR, McMahon-Pratt D, 1987. Identification and distribution of New World Leishmania species characterized by serodeme analysis using monoclonal antibodies. Am J Trop Med Hyg 36 :270–287.

    • Search Google Scholar
    • Export Citation
  • 13

    Jaffe CL, Bennett E, Grimaldi G Jr, McMahon-Pratt D, 1984. Production and characterization of species-specific monoclonal antibodies against Leishmania donovani for immunodiagnosis. J Immunol 133 :440–447.

    • Search Google Scholar
    • Export Citation
  • 14

    McMahon-Pratt D, Bennett E, David JR, 1982. Monoclonal antibodies that distinguish subspecies of Leishmania braziliensis. J Immunol 129 :926–927.

    • Search Google Scholar
    • Export Citation
  • 15

    Bomfim G, Nascimento C, Costa J, Carvalho EM, Barral-Netto M, Barral A, 1996. Variation of cytokine patterns related to therapeutic response in diffuse cutaneous leishmaniasis. Exp Parasitol 84 :188–194.

    • Search Google Scholar
    • Export Citation
  • 16

    Pompeu MM, Brodskyn C, Teixeira MJ, Clarencio J, Van Weyenberg J, Coelho IC, Cardoso SA, Barral A, Barral-Netto M, 2001. Differences in gamma interferon production in vitro predict the pace of the in vivo response to Leishmania amazonensis in healthy volunteers. Infect Immun 69 :7453–7460.

    • Search Google Scholar
    • Export Citation
  • 17

    Nathan C, 2006. Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol 6 :173–182.

  • 18

    van Zandbergen G, Klinger M, Mueller A, Dannenberg S, Gebert A, Solbach W, Laskay T, 2004. Cutting edge: neutrophil granulocyte serves as a vector for Leishmania entry into macrophages. J Immunol 173 :6521–6525.

    • Search Google Scholar
    • Export Citation
  • 19

    Rousseau D, Demartino S, Ferrua B, Michiels JF, Anjuere F, Fragaki K, Le Fichoux Y, Kubar J, 2001. In vivo involvement of polymorphonuclear neutrophils in Leishmania infantum infection. BMC Microbiol 1 :17.

    • Search Google Scholar
    • Export Citation
  • 20

    Abadie V, Badell E, Douillard P, Ensergueix D, Leenen PJ, Tanguy M, Fiette L, Saeland S, Gicquel B, Winter N, 2005. Neutrophils rapidly migrate via lymphatics after Mycobacterium bovis BCG intradermal vaccination and shuttle live bacilli to the draining lymph nodes. Blood 106 :1843–1850.

    • Search Google Scholar
    • Export Citation
  • 21

    Tvinnereim AR, Hamilton SE, Harty JT, 2004. Neutrophil involvement in cross-priming CD8+ T cell responses to bacterial antigens. J Immunol 173 :1994–2002.

    • Search Google Scholar
    • Export Citation
  • 22

    Hill JO, Awwad M, North RJ, 1989. Elimination of CD4+ suppressor T cells from susceptible BALB/c mice releases CD8+ T lymphocytes to mediate protective immunity against Leishmania. J Exp Med 169 :1819–1827.

    • Search Google Scholar
    • Export Citation
  • 23

    Milon G, Titus RG, Cerottini JC, Marchal G, Louis JA, 1986. Higher frequency of Leishmania major-specific L3T4+ T cells in susceptible BALB/c as compared with resistant CBA mice. J Immunol 136 :1467–1471.

    • Search Google Scholar
    • Export Citation
  • 24

    Smith LE, Rodrigues M, Russell DG, 1991. The interaction between CD8+ cytotoxic T cells and Leishmania-infected macrophages. J Exp Med 174 :499–505.

    • Search Google Scholar
    • Export Citation
  • 25

    Muller I, Kropf P, Louis JA, Milon G, 1994. Expansion of gamma interferon-producing CD8+ T cells following secondary infection of mice immune to Leishmania major. Infect Immun 62 :2575–2581.

    • Search Google Scholar
    • Export Citation
  • 26

    Huber M, Timms E, Mak TW, Rollinghoff M, Lohoff M, 1998. Effective and long-lasting immunity against the parasite Leishmania major in CD8-deficient mice. Infect Immun 66 :3968–3970.

    • Search Google Scholar
    • Export Citation
  • 27

    Overath P, Harbecke D, 1993. Course of Leishmania infection in beta 2-microglobulin-deficient mice. Immunol Lett 37 :13–17.

  • 28

    Wang ZE, Reiner SL, Hatam F, Heinzel FP, Bouvier J, Turck CW, Locksley RM, 1993. Targeted activation of CD8 cells and infection of beta 2-microglobulin-deficient mice fail to confirm a primary protective role for CD8 cells in experimental leishmaniasis. J Immunol 151 :2077–2086.

    • Search Google Scholar
    • Export Citation
  • 29

    Da-Cruz AM, Conceicao-Silva F, Bertho AL, Coutinho SG, 1994. Leishmania-reactive CD4+ and CD8+ T cells associated with cure of human cutaneous leishmaniasis. Infect Immun 62 :2614–2618.

    • Search Google Scholar
    • Export Citation
  • 30

    Brodskyn CI, Barral A, Boaventura V, Carvalho E, Barral-Netto M, 1997. Parasite-driven in vitro human lymphocyte cytotoxicity against autologous infected macrophages from mucosal leishmaniasis. J Immunol 159 :4467–4473.

    • Search Google Scholar
    • Export Citation
  • 31

    Machado P, Kanitakis J, Almeida R, Chalon A, Araujo C, Carvalho EM, 2002. Evidence of in situ cytotoxicity in American cutaneous leishmaniasis. Eur J Dermatol 12 :449–451.

    • Search Google Scholar
    • Export Citation
  • 32

    Mengistu G, Akuffo HO, Yemane-Berhan T, Britton S, Fehniger TE, 1990. Serum antibody specificities to Leishmania aethiopica antigens in patients with localized and diffuse cutaneous leishmaniasis. Parasite Immunol 12 :495–507.

    • Search Google Scholar
    • Export Citation
  • 33

    Schurr E, Kidane K, Yemaneberhan T, Wunderlich F, 1986. Cutaneous leishmaniasis in Ethiopia: I. Lymphocyte transformation and antibody titre. Trop Med Parasitol 37 :403–408.

    • Search Google Scholar
    • Export Citation
  • 34

    Vieira MG, Oliveira F, Arruda S, Bittencourt AL, Barbosa AA Jr, Barral-Netto M, Barral A, 2002. B-cell infiltration and frequency of cytokine producing cells differ between localized and disseminated human cutaneous leishmaniases. Mem Inst Oswaldo Cruz 97 :979–983.

    • Search Google Scholar
    • Export Citation
  • 35

    Babai B, Louzir H, Cazenave PA, Dellagi K, 1999. Depletion of peritoneal CD5+ B cells has no effect on the course of Leishmania major infection in susceptible and resistant mice. Clin Exp Immunol 117 :123–129.

    • Search Google Scholar
    • Export Citation
  • 36

    Brown DR, Reiner SL, 1999. Polarized helper-T-cell responses against Leishmania major in the absence of B cells. Infect Immun 67 :266–270.

    • Search Google Scholar
    • Export Citation
  • 37

    Scott P, Natovitz P, Sher A, 1986. B lymphocytes are required for the generation of T cells that mediate healing of cutaneous leishmaniasis. J Immunol 137 :1017–1021.

    • Search Google Scholar
    • Export Citation
  • 38

    Sommer F, Meixner M, Mannherz M, Ogilvie AL, Rollinghoff M, Lohoff M, 1998. Analysis of cytokine patterns produced by individual CD4+ lymph node cells during experimental murine leishmaniasis in resistant and susceptible mice. Int Immunol 10 :1853–1861.

    • Search Google Scholar
    • Export Citation
  • 39

    Melby PC, Andrade-Narvaez FJ, Darnell BJ, Valencia-Pacheco G, Tryon VV, Palomo-Cetina A, 1994. Increased expression of proinflammatory cytokines in chronic lesions of human cutaneous leishmaniasis. Infect Immun 62 :837–842.

    • Search Google Scholar
    • Export Citation
  • 40

    Anderson CF, Oukka M, Kuchroo VJ, Sacks D, 2007. CD4(+)CD25(-)Foxp3(-) Th1 cells are the source of IL-10-mediated immune suppression in chronic cutaneous leishmaniasis. J Exp Med 204 :285–297.

    • Search Google Scholar
    • Export Citation
  • 41

    Faria DR, Gollob KJ, Barbosa J Jr, Schriefer A, Machado PR, Lessa H, Carvalho LP, Romano-Silva MA, de Jesus AR, Carvalho EM, Dutra WO, 2005. Decreased in situ expression of interleukin-10 receptor is correlated with the exacerbated inflammatory and cytotoxic responses observed in mucosal leishmaniasis. Infect Immun 73 :7853–7859.

    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 64 49 0
PDF Downloads 5 4 0
 
 
 
 
 
 
 
 
 
 
 

Cellular Analysis of Cutaneous Leishmaniasis Lymphadenopathy: Insights into the Early Phases of Human Disease

Glória BomfimUniversidade Federal da Bahia, Salvador-Bahia, Brazil; Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador-Bahia, Brazil; Instituto de Investigação em Imunologia, Instituto do Milênio, Salvador, Bahia, Brazil

Search for other papers by Glória Bomfim in
Current site
Google Scholar
PubMed
Close
,
Bruno B. AndradeUniversidade Federal da Bahia, Salvador-Bahia, Brazil; Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador-Bahia, Brazil; Instituto de Investigação em Imunologia, Instituto do Milênio, Salvador, Bahia, Brazil

Search for other papers by Bruno B. Andrade in
Current site
Google Scholar
PubMed
Close
,
Silvane SantosUniversidade Federal da Bahia, Salvador-Bahia, Brazil; Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador-Bahia, Brazil; Instituto de Investigação em Imunologia, Instituto do Milênio, Salvador, Bahia, Brazil

Search for other papers by Silvane Santos in
Current site
Google Scholar
PubMed
Close
,
Jorge ClarêncioUniversidade Federal da Bahia, Salvador-Bahia, Brazil; Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador-Bahia, Brazil; Instituto de Investigação em Imunologia, Instituto do Milênio, Salvador, Bahia, Brazil

Search for other papers by Jorge Clarêncio in
Current site
Google Scholar
PubMed
Close
,
Manoel Barral-NettoUniversidade Federal da Bahia, Salvador-Bahia, Brazil; Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador-Bahia, Brazil; Instituto de Investigação em Imunologia, Instituto do Milênio, Salvador, Bahia, Brazil

Search for other papers by Manoel Barral-Netto in
Current site
Google Scholar
PubMed
Close
, and
Aldina BarralUniversidade Federal da Bahia, Salvador-Bahia, Brazil; Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador-Bahia, Brazil; Instituto de Investigação em Imunologia, Instituto do Milênio, Salvador, Bahia, Brazil

Search for other papers by Aldina Barral in
Current site
Google Scholar
PubMed
Close
View More View Less
Restricted access

Lymphadenopathy is an early clinical sign in cutaneous leishmaniasis (CL), caused by Viannia parasites, and may help to understand the initial host response to these species of Leishmania. We report on characteristics of cells obtained from lymph nodes from cutaneous leishmaniasis patients with lymphadenopathy without ulceration (early phase, N = 21) or lymphadenopathy and ulceration (late phase, N = 29). Early-phase patients exhibited a higher proportion of neutrophils, eosinophils, and CD8+ T cells. Conversely, CD19+ B lymphocytes and plasma cells were more frequently observed in late-phase patients. The signal for IL-10 was significantly higher in late-phase patients; signals for IFN-γ or IL-4 were similar in both groups. These data reinforce observations of an initial mixed Th1–Th2 profile as well as the early role of the CD8 T cell in cutaneous leishmaniasis. Additionally, there is a chronologic relationship between ulcer development and B-cell increase. IL-10 also increases at a late stage and may be important in limiting tissue damage.

Author Notes

Reprint requests: Aldina Barral, Laboratório de Imunoparasitologia, Centro de Pesquisas Gonçalo Moniz, FIOCRUZ, Rua Waldemar Falcão, 121, Candeal. CEP: 40295-001 Salvador, Bahia, Brazil. Phone: 55 71 3176-2259. Fax: 55 71 3176-2279. E-mail: abarral@bahia.fiocruz.br.
Save