Insecticide Resistance Mechanisms of Brazilian Aedes aegypti Populations from 2001 to 2004

Isabela Reis Montella Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil; Instituto de Biologia do Exército, Rio de Janeiro, Brazil; Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, DF, Brazil

Search for other papers by Isabela Reis Montella in
Current site
Google Scholar
PubMed
Close
,
Ademir Jesus Martins Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil; Instituto de Biologia do Exército, Rio de Janeiro, Brazil; Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, DF, Brazil

Search for other papers by Ademir Jesus Martins in
Current site
Google Scholar
PubMed
Close
,
Priscila Fernandes Viana-Medeiros Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil; Instituto de Biologia do Exército, Rio de Janeiro, Brazil; Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, DF, Brazil

Search for other papers by Priscila Fernandes Viana-Medeiros in
Current site
Google Scholar
PubMed
Close
,
José Bento Pereira Lima Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil; Instituto de Biologia do Exército, Rio de Janeiro, Brazil; Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, DF, Brazil

Search for other papers by José Bento Pereira Lima in
Current site
Google Scholar
PubMed
Close
,
Ima Aparecida Braga Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil; Instituto de Biologia do Exército, Rio de Janeiro, Brazil; Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, DF, Brazil

Search for other papers by Ima Aparecida Braga in
Current site
Google Scholar
PubMed
Close
, and
Denise Valle Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil; Instituto de Biologia do Exército, Rio de Janeiro, Brazil; Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, DF, Brazil

Search for other papers by Denise Valle in
Current site
Google Scholar
PubMed
Close
Restricted access

In Brazil, Aedes aegypti resistance to temephos, used since 1967, was detected in several municipalities in 2000. Organophosphates were substituted by pyrethroids against adults and, in some localities, by Bti against larvae. However, high temephos resistance ratios were still detected between 2001 and 2004. Field-simulated assays confirmed a low temephos residual effect. Acethylcholinesterase and Mixed Function Oxidase profiles were not altered. In contrast, higher Esterase activity, studied with three substrates, was found in all examined populations collected in 2001. From 2001 to 2004, a slight reduction in α-Esterase (EST) and β-EST activity together with a gradual increase of p-nitrophenyl acetate (PNPA)-EST was noted. Gluthathione-S-transferase alteration was encountered only in the northeast region in 2001, spreading the entire country thereafter. In general, except for α-EST and β-EST, only one enzyme class was altered in each mosquito specimen. Data are discussed in the context of historic application of insecticides in Brazil.

Author Notes

  • 1

    Lourenço-de-Oliveira R, Vazeille M, Fillipis AMB, Failloux AB, 2004. Aedes aegypti in Brazil: genetically differentiated populations with high susceptibility to dengue and yellow fever viruses. Trans R Soc Trop Med Hyg 98 :43–54.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2

    Barbosa-da-Silva J Jr, Siqueira JB Jr, Coelho GE, Vilarinhos PT, Pimenta FG Jr, 2002. Dengue in Brazil: current situation and control activities. Epidemiol Bull 23 :3–6.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3

    Schatzmayr HG, Nogueira RMR, Rosa APAT, 1986. An outbreak of dengue virus at Rio de Janeiro. Mem Inst Oswaldo Cruz 81 :245–246.

  • 4

    Dletz VJ, Gubler DJ, Rigau-Pérez JG, Pinheiro F, Schatzmayr HG, Bailey R, Gunn RA, 1990. Epidemic dengue 1 in Brazil, 1986: Evaluation of a clinically based dengue surveillance system. Am J Epidemiol 131 :693–701.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5

    Fundação Nacional de Saúde, 1999. Reunião Técnica Para Discutir Status de Resistência de Aedes aegypti e Definir Estratégias a Serem Implantadas Para Monitoramento da Resistência no Brasil. Brasilia: Ministério da Saúde.

    • PubMed
    • Export Citation
  • 6

    Fundação Nacional de Saúde, 2001. Dengue: Instruções Para Pessoal de Combate ao Vetor: Manual de Normas e Técnicas. 3rd ed. Brasilia: Ministério da Saúde.

    • PubMed
    • Export Citation
  • 7

    Lima JBP, Da-Cunha MP, Silva-Jr RCS, Galardo AKR, Soares SS, Braga IA, Ramos RP, Valle D, 2003. Resistance of Aedes aegypti to organophosphates in several municipalities in the state of Rio de Janeiro and Espírito Santo, Brazil. Am J Trop Med Hyg 68 :329–333.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8

    Braga IA, Lima JBP, Soares SS, Valle D, 2004. Aedes aegypti resistance to temephos during 2001 in several municipalities in the States of Rio de Janeiro, Sergipe and Alagoas, Brazil. Mem Inst Oswaldo Cruz 99 :199–203.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9

    Da-Cunha MP, Lima JBP, Brogdon WG, Moya GE, Valle D, 2005. Monitoring of resistance to the pyrethroid cypermetrin in Brazilian Aedes aegypti (Diptera: Culicidae) populations collected between 2001 and 2003. Mem Inst Oswaldo Cruz 100 :441–444.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10

    Hemingway J, Ranson H, 2000. Insecticide resistance in insect vectors of human disease. Annu Rev Entomol 45 :371–391.

  • 11

    Valle D, Montella IR, Ribeiro RA, Medeiros PFV, Martins-Jr AJ, Lima JBP, 2006. Quantification methodology for enzyme activity related to insecticide resistance in Aedes aegypti. Fundação Oswaldo Cruz and Secretaria de Vigilância em Saúde, Ministério da Saúde. Rio de Janeiro and Distrito Federal.

    • PubMed
    • Export Citation
  • 12

    Brogdon WG, 1989. Biochemical resistance detection: an alternative to bioassay. Parasitol Today 5 :56–60.

  • 13

    Hemingway J, 1998. Techniques to Detect Insecticide Resistance Mechanisms (Field and Laboratory Manual). Geneva: World Health Organization.

    • PubMed
    • Export Citation
  • 14

    Braga IA, Gomes AC, Nelson M, Mello RCG, Bergamaschi DP, Souza JMP, 2000. Comparative study between larval surveys and ovitraps to monitor populations of Aedes aegypti. Rev Soc Bras Med Trop 33 :347–353.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15

    World Health Organization, 1981. Instructions for Determining the Susceptibility or Resistance of Mosquito Larvae to Insecticides. Geneva: World Health Organization.

    • PubMed
    • Export Citation
  • 16

    Secretaria de Vigilância em Saúde/Ministério da Saúde, 2004. Reunião Técnica Para Discutir e Avaliar os Resultados do Monitoramento de Resistência do Aedes aegypti a Inseticidas. Brasília: Distrito Federal.

    • PubMed
    • Export Citation
  • 17

    Secretaria de Vigilância em Saúde/Ministério da Saúde, 2005. Normas Para Utilização de Bioinseticida à Base Bacillus thuringiensis israelensis (Bti) Para Controle de Aedes aegypti. Brasília: Distrito Federal.

    • PubMed
    • Export Citation
  • 18

    Centers for Disease Control, 1998. Insecticide Resistance. Atlanta: Centers for Disease Control.

    • PubMed
    • Export Citation
  • 19

    Braga IA, Mello CB, Montella IR, Lima JBP, Martins-Jr AJ, Medeiros PFV, Valle D, 2005. Effectiveness of methoprene, an insect growth regulator, against temephos-resistant Aedes aegypti populations from different Brazilian localities, under laboratory conditions. J Med Entomol 42 :830–837.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20

    Davidson G, Zahar AR, 1973. The practical implications of resistance of malaria vectors to insecticides. Bull Wld Hlth Org 49 :475–483.

  • 21

    Mazzari MB, Georghiou GP, 1995. Characterization of resistance to organophosphate, carbamate, and pyrethroid insecticides in field populations of Aedes aegypti from Venezuela. J Am Mosq Cont Assoc 11 :315–322.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22

    Secretaria de Vigilância em Saúde / Ministério da Saúde, 2006. Reunião Técnica Para Discutir Status de Resistência de Aedes aegypti. Rio de Janeiro: Ministério da Saúde.

    • PubMed
    • Export Citation
  • 23

    Lima JBP, Melo NV, Valle D, 2005. Persistence of Vectobac WDG and Metoprag S-2G against Aedes aegypti larvae using a semi-field bioassay in Rio de Janeiro, Brazil. Rev Inst Med Trop SP 47 :7–12.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24

    Macoris MLG, Andrighetti MTM, Takaku L, Glasser CM, Garbeloto VC, Bracco JE, 2003. Resistance of Aedes aegypti from the State of São Paulo, Brazil, to organophosphates insecticides. Mem Inst Oswaldo Cruz 98 :703–708.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25

    Rodriguez MM, Bisset J, Ruiz M, Soca A, 2003. Cross-resistance to pyrethroid and organophosphorus insecticides induced by selection with temephos in Aedes aegypti (Diptera: Culicidae) from Cuba. J Med Entomol 39 :882–888.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    Flores AE, Albeldaño Vázquez W, Salas IF, Badii MH, Becerra HL, Garcia GP, Fuentes SL, Brogdon WG, Black WC, Beaty B, 2005. Elevated α-esterase levels associated with permethrin tolerance in Aedes aegypti (L.) from Baja California, Mexico. Pest Biochem Physiol 82 :66–78.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27

    Lumjuan N, McCarroll L, Prapanthadara L, Hemingway J, Ranson H, 2005. Elevated activity of an Epsilon class glutathione transferase confers DDT resistance in the dengue vector, Aedes aegypti. Insect Bioch Mol Biol 35 :861–871.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28

    Raymond M, Berticart C, Weill M, Pasteur N, Chevillon C, 2001. Insecticide resistance in the mosquito Culex pipiens: what have we learned about adaptation? Genetica 112–113 :287–296.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29

    Labbe P, Lenormand T, Raymond M, 2005. On the worldwide spread of an insecticide resistance gene: a role for a local selection. J Evol Biol 18 :1471–1484.

  • 30

    Lima-Castelani ARA, Ceron CR, Bicudo HEMC, 2004. Variation of genetic expression during development, revealed by esterases patterns in Aedes aegypti (Diptera, Culicidae). Bioch Genet 42 :69–83.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31

    Hemingway J, Karunaratne HPPK, 1998. Mosquito carboxylesterases: a review of the molecular biology and biochemistry of a major insecticide resistance mechanism. Med Vet Entomol 12 :1–12.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32

    Aldridge WN, 1953. Serum esterases. 1. Two types of esterases (A and B) hydrolysing p-nitrophenyl acetate, propionate and butyrate, and a method for their determination. Bioch J 53 :110–117.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33

    Okuda H, 1991. Esterases. Kuby AK, Kuby SE, Kuby SA, eds. Study of Enzymes VII. London and New York: CRC Press; 563–579.

    • PubMed
    • Export Citation
  • 34

    International Union of Biochemistry and Molecular Biology, 1992. Enzyme Nomenclature: Recommendations. San Diego, CA: Nomenclature Committee. Academic Press.

    • PubMed
    • Export Citation
  • 35

    Hemingway J, 2000. The molecular basis of two contrasting metabolic mechanisms of insecticide resistance. Insect Bioch Mol Biol 30 :1009–1015.

  • 36

    Hemingway J, Hawkes NJ, McCarroll L, Ranson H, 2004. The molecular basis of insecticide resistance in mosquitoes. Insect Bioch Mol Biol 34 :653–665.

  • 37

    Wheelock CE, Shan G, Ottea J, 2005. Overview of carboxylesterases and their role in the metabolism of insecticides. J Pestic Sci 30 :75–83.

  • 38

    Rodriguez MM, Bisset JA, Diaz C, Soca LA, 2002. Resistencia cruzada a piretroides en Aedes aegypti de Cuba inducido por la selección com el insecticida organofosforado malation. Rev Cubana Med Trop 55 :105–111.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39

    Field WN, Hitchen JM, Rees AT, 1984. Esterase activity in strains of Aedes aegypti (Diptera: Culicidae) tolerant and susceptible to the organophosphate insecticide malathion. J Med Entomol 21 :412–418.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40

    Hayes JD, Wolf CR, 1988. Role of Glutathione transferase in drug resistance. Sies H, Ketterer B, eds. Glutathione Conjugation: Mechanisms and Biological Significance. London: Academic Press; 315–355.

    • PubMed
    • Export Citation
  • 41

    Vontas JG, Small GJ, Nikou DC, Ranson H, Hemingway J, 2002. Purification, molecular cloning and heterologous expression of a glutathione S-transferase involved in insecticide resistance from the rice brown planthopper, Nilaparvata lugens. Biochem J 362 :329–337.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42

    Enayati AA, Ranson H, Hemingway J, 2005. Insect glutathione transferases and insecticide resistance. Insect Mol Biol 14 :3–8.

  • 43

    Lowy I, 1999. Representing and interventing in public health: viruses, mosquitoes and Rockefeller Foundation experts in Brazil. Hist Cienc Saúde-Manguinhos 5 :647–677.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44

    Franco O, 1976. História da Febre Amarela no Brasil. Superintendência de Campanhas de Saúde Pública. Rio de Janeiro: Ministério da Saúde.

    • PubMed
    • Export Citation
  • 45

    Ayres CFJ, Melo-Santos MAV, Sole-Cava AM, Furtado AF, 2003. Genetic differentiation of Aedes aegypti (Diptera, Culicidae), the major dengue vector in Brazil. J Med Entomol 40 :430–435.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46

    Paduan KS, Araújo-Júnior JP, Ribolla PEM, 2006. Genetic variability in geographical populations of Aedes aegypti (Diptera, Culicidae) in Brazil elucidated by molecular markers. Gen Mol Biol 29 :391–395.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47

    Soderlund DM, Knipple DC, 2003. The molecular biology of Knockdown resistance to pyrethroid insecticides. Insect Biochem Mol Biol 33 :563–577.

  • 48

    Brengues C, Hawkes NJ, Chandre F, McCarroll L, Duchon S, Guillet P, Manguin S, Morgan JC, Hemingway J, 2003. Pyrethroid and DDT cross-resistance in Aedes aegypti is correlated with novel mutations in the voltage-gated sodium channel gene. Med Vet Entomol 17 :87–94.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49

    Prapanthadara L, Hemingway J, Ketterman AJ, 1993. Partial purification and characterization of glutathione-S-transferase involved in DDT resistance from the mosquito Anopheles gambiae. Pest Bioch Phys 47 :119–133.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50

    Prapanthadara L, Hemingway J, Ketterman AJ, 1995. DDT-resistance in Anopheles gambiae Giles from Zanzibar Tanzania, based on increased DDT-dehydrochlorinase activity of glutathione-S-transferases. Bull Entomol Res 85 :267–274.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51

    Sousa-Polezzi R, Bicudo H, 2005. Genetic variation along time in a Brazilian population of Aedes aegypti (Diptera: Culicidae), detected by changes in the esterase patterns. Genetica 125 :43–45.

    • PubMed
    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 325 223 12
Full Text Views 484 3 0
PDF Downloads 195 3 0
 

 

 

 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save