• 1

    Gonzalez JM, Olano V, Vergara J, Arevalo-Herrera M, Carrasquilla G, Herrera S, Lopez JA, 1997. Unstable, low-level transmission of malaria on the Colombian Pacific Coast. Ann Trop Med Parasitol 91 :349–358.

    • Search Google Scholar
    • Export Citation
  • 2

    Robert V, Boudin C, 2003. Biologie de la transmission homme–moustique du Plasmodium. Bull Soc Pathol Exot 96 :6–20.

  • 3

    Kiszewski A, Mellinger A, Spielman A, Malaney P, Ehrlich SS, Sachs J, 2004. A global index representing the stability of malaria transmission. Am J Trop Med Hyg 70 :486–498.

    • Search Google Scholar
    • Export Citation
  • 4

    Ranawaka MB, Munesinghe YD, da Silva DMR, Carter R, Mendis KN, 1988. Boosting of transmission blocking immunity during natural Plasmodium vivax infection in humans depends upon frequent reinfection. Infec Immun 56 :1820–1824.

    • Search Google Scholar
    • Export Citation
  • 5

    Naotunne TS, Karunaweera ND, Del Giudice G, Kularatne MU, Grau GE, Carter R, Mendis K, 1991. Cytokines kill malaria parasites during infection crisis: extracellular complementary factors are essential. J Exp Med 173 :523–529.

    • Search Google Scholar
    • Export Citation
  • 6

    Healer DJ, McGuinness P, Hopcroft SH, Carter R, Riley E, 1997. Complement-mediated lysis of Plasmodium falciparum gametes by malaria-immune human sera is associated with antibodies to the gamete surface antigen Pfs230. Infec Immun 65 :3017–3023.

    • Search Google Scholar
    • Export Citation
  • 7

    Kleinschmidt I, Clarke GPY, Bagayoko M, Craig MH, Sueur D, 2000. A spatial statistical approach to malaria mapping. Int J Epidemiol 29 :355–361.

    • Search Google Scholar
    • Export Citation
  • 8

    King MV, 1996. Available at: http://www.indstate.edu/thcme/mwking/blood-coagulation.html#image. Accessed November 2006.

  • 9

    Siden-Kiamos I, Ecker A, Nybäck S, Louis C, Sinden RE, Billker O, 2006. Plasmodium berghei calcium-dependent protein kinase 3 is required for ookinete gliding motility and mosquito midgut invasion. Mol Microbiol 60 :1355–1363.

    • Search Google Scholar
    • Export Citation
  • 10

    Olano V, Carrasquilla G, Méndez F, 1997. Transmisión de la malaria urbana en Buenaventura, Colombia. Aspectos entomológicos. Rev Panam Salud Públ 1 :287–294.

    • Search Google Scholar
    • Export Citation
  • 11

    Salas ML, Romero JF, Solarte Y, Olano V, Herrera MA, Herrera S, 1994. Development of sporogonic cycle of Plasmodium vivax in experimentally infected Anopheles albimanus mosquitoes. Mem Inst Oswaldo Cruz 89 :115–119.

    • Search Google Scholar
    • Export Citation
  • 12

    Hurtado S, Salas ML, Romero JF, Zapata JC, Ortiz H, Arevalo-Herrera M, Herrera S, 1997. Regular production of infective sporozoites of Plasmodium falciparum and P. vivax in laboratory-bred Anopheles albimanus. Ann Trop Med Parasitol 91 :49–60.

    • Search Google Scholar
    • Export Citation
  • 13

    Social, MP, 2000. Ultimas Normas. Servicio de Salud Colombia. Guias de atención de la malaria (Resolucion Numero 00412 de 2000). Available at: http://www.saludcolombia.com/actual/htmlnormas/ntmalariaI.htm

  • 14

    Arevalo-Herrera M, Solarte Y, Zamora F, Mendez F, Yasnot MF, Rocha L, Long C, Miller LH, Herrera S, 2005. Plasmodium vivax: transmission-blocking immunity in a malaria-endemic area of Colombia. Am J Trop Med Hyg 73 :38–43.

    • Search Google Scholar
    • Export Citation
  • 15

    Lensen A, van Druten J, Bolmer M, van Gemert J, Eling W, Sauerwein RW, 1996. Measurement by membrane feeding of reduction in Plasmodium falciparum transmission induced by endemic area. Trans R Soc Trop Med Hyg 90 :20–22.

    • Search Google Scholar
    • Export Citation
  • 16

    Carter R, Nijhout MM, 1977. Control of gamete formation (ex-flagellation) in malaria parasites. Science 195 :407–409.

  • 17

    Arai M, Billker O, Morris HR, Panico M, Delcroix M, Dixon D, Ley SV, Sinden RE, 2001. Both mosquito-derived xanthurenic acid and a host blood-derived factor regulate gametogenesis of Plasmodium in the midgut of the mosquito. Mol Bioch Para-sitol 116 :17–24.

    • Search Google Scholar
    • Export Citation
  • 18

    Nijhout MM, Carter R, 1978. Gamete development in malaria parasites: bicarbonate-dependent stimulation by pH in vitro. Parasitol 76 :39–53.

    • Search Google Scholar
    • Export Citation
  • 19

    Moorthy VS, Good MF, Hill AVS, 2004. Malaria vaccine developments. Lancet 363 :150–156.

  • 20

    Clapham DE, 1995. Calcium signaling. Cell 80 :259–268.

  • 21

    Doerig CD, 1997. Signal transduction in malaria parasites. Para-sitol Today 13 :307–313.

  • 22

    Muhia DK, Swales CA, Deng W, Kelly JM, Baker DA, 2001. The gametocyte-activating factor xanthurenic acid stimulates an increase in membrane-associated guanylyl cyclase activity in the human malaria parasite Plasmodium falciparum. Mol Microbiol 42 :553–560.

    • Search Google Scholar
    • Export Citation
  • 23

    Billker O, Tewari R, Franke-Fayard B, Brinkman V, 2004. Calcium and a calcium-dependent protein kinase regulate gamete formation and mosquito transmission in a malaria parasite. Cell 117 :503–514.

    • Search Google Scholar
    • Export Citation
  • 24

    Li JL, Baker DA, Cox LS, 2000. Sexual stage-specific expression of a third calcium-dependent protein kinase from Plasmodium falciparum. Biochim Biophys Acta 1491 :341–349.

    • Search Google Scholar
    • Export Citation
  • 25

    Rawlings DJ, Kaslow DC, 1992. A novel 40-kDa membrane-associated EF-hand calcium-binding protein in Plasmodium falciparum. J Biol Chem 267 :3976–3982.

    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 3 3 3
Full Text Views 192 154 0
PDF Downloads 33 18 0
 
 
 
 
 
 
 
 
 
 
 

Effects of Anticoagulants on Plasmodium vivax Oocyst Development in Anopheles albimanus Mosquitoes

Yezid SolarteMalaria Vaccine and Drug Development Center, MVDC, Cali, Colombia; Universidad Nacional de Colombia, Sede Palmira, Colombia; Department of Tropical Medicine, Tulane University, New Orleans, Louisiana; Instituto de Inmunologia del Valle, Universidad del Valle, Cali, Colombia

Search for other papers by Yezid Solarte in
Current site
Google Scholar
PubMed
Close
,
Maria del Rosario ManzanoMalaria Vaccine and Drug Development Center, MVDC, Cali, Colombia; Universidad Nacional de Colombia, Sede Palmira, Colombia; Department of Tropical Medicine, Tulane University, New Orleans, Louisiana; Instituto de Inmunologia del Valle, Universidad del Valle, Cali, Colombia

Search for other papers by Maria del Rosario Manzano in
Current site
Google Scholar
PubMed
Close
,
Leonardo RochaMalaria Vaccine and Drug Development Center, MVDC, Cali, Colombia; Universidad Nacional de Colombia, Sede Palmira, Colombia; Department of Tropical Medicine, Tulane University, New Orleans, Louisiana; Instituto de Inmunologia del Valle, Universidad del Valle, Cali, Colombia

Search for other papers by Leonardo Rocha in
Current site
Google Scholar
PubMed
Close
,
Zuleyma CastilloMalaria Vaccine and Drug Development Center, MVDC, Cali, Colombia; Universidad Nacional de Colombia, Sede Palmira, Colombia; Department of Tropical Medicine, Tulane University, New Orleans, Louisiana; Instituto de Inmunologia del Valle, Universidad del Valle, Cali, Colombia

Search for other papers by Zuleyma Castillo in
Current site
Google Scholar
PubMed
Close
,
Mark A. JamesMalaria Vaccine and Drug Development Center, MVDC, Cali, Colombia; Universidad Nacional de Colombia, Sede Palmira, Colombia; Department of Tropical Medicine, Tulane University, New Orleans, Louisiana; Instituto de Inmunologia del Valle, Universidad del Valle, Cali, Colombia

Search for other papers by Mark A. James in
Current site
Google Scholar
PubMed
Close
,
Sócrates HerreraMalaria Vaccine and Drug Development Center, MVDC, Cali, Colombia; Universidad Nacional de Colombia, Sede Palmira, Colombia; Department of Tropical Medicine, Tulane University, New Orleans, Louisiana; Instituto de Inmunologia del Valle, Universidad del Valle, Cali, Colombia

Search for other papers by Sócrates Herrera in
Current site
Google Scholar
PubMed
Close
, and
Myriam Arévalo-HerreraMalaria Vaccine and Drug Development Center, MVDC, Cali, Colombia; Universidad Nacional de Colombia, Sede Palmira, Colombia; Department of Tropical Medicine, Tulane University, New Orleans, Louisiana; Instituto de Inmunologia del Valle, Universidad del Valle, Cali, Colombia

Search for other papers by Myriam Arévalo-Herrera in
Current site
Google Scholar
PubMed
Close
View More View Less
Restricted access

Artificial membrane feeding (AMF) assays are used to determine malaria transmission-blocking activity in Anopheles. The purpose of this study was to determine the effect of the most widely used anticoagulants, EDTA and heparin, on development of the Plasmodium vivax sporogonic cycle. Blood samples collected from 60 patients carrying P. vivax infections were used to feed An. albimanus using AMF. Seven days after feeding, mosquitoes were dissected to assess mosquito infection. Mosquitoes fed with blood containing EDTA showed a lower mean oocyst number as compared with those fed blood with heparin. However, this effect was minimized upon reduction of EDTA concentrations in the serum. This result may be explained by the fact that microgametocytes require Ca2+, Mn2+, and Mg+2 to activate enzymes important for exflagellation process and for motility of ookinetes. We therefore recommend that heparin be used as the anticoagulant of choice for blood used in AMF assays.

Author Notes

Reprint requests: Myriam Arévalo-Herrera, Malaria Vaccine and Drug Development Center, Carrera 35 No 4A-53, AA 26020, Cali, Colombia, E-mail: marevalo@inmuno.org.
Save