• 1

    Marsh K, Kinyanjui S, 2006. Immune effector mechanisms in malaria. Parasite Immunol 28 :51–60.

  • 2

    Gupta S, Snow RW, Donnelly CA, Marsh K, Newbold C, 1999. Immunity to non-cerebral severe malaria is acquired after one or two infections. Nat Med 5 :340–343.

    • Search Google Scholar
    • Export Citation
  • 3

    Genton B, Al Yaman F, Beck HP, Hii J, Mellor S, Narara A, Gibson N, Smith T, Alpers MP, 1995. The epidemiology of malaria in the Wosera area, East Sepik Province, Papua New Guinea, in preparation for vaccine trials. I. Malariometric indices and immunity. Ann Trop Med Parasitol 89 :359–376.

    • Search Google Scholar
    • Export Citation
  • 4

    Genton B, Al Yaman F, Beck HP, Hii J, Mellor S, Rare L, Ginny M, Smith T, Alpers MP, 1995. The epidemiology of malaria in the Wosera area, East Sepik Province, Papua New Guinea, in preparation for vaccine trials. II. Mortality and morbidity. Ann Trop Med Parasitol 89 :377–390.

    • Search Google Scholar
    • Export Citation
  • 5

    Schofield L, Mueller I, 2006. Clinical immunity to malaria. Curr Mol Med 6 :205–221.

  • 6

    Yazdani SS, Mukherjee P, Chauhan VS, Chitnis CE, 2006. Immune responses to asexual blood-stages of malaria parasites. Curr Mol Med 6 :187–203.

    • Search Google Scholar
    • Export Citation
  • 7

    Wipasa J, Elliott S, Xu H, Good MF, 2002. Immunity to asexual blood stage malaria and vaccine approaches. Immunol Cell Biol 80 :401–414.

    • Search Google Scholar
    • Export Citation
  • 8

    Bull PC, Marsh K, 2002. The role of antibodies to Plasmodium falciparum-infected-erythrocyte surface antigens in naturally acquired immunity to malaria. Trends Microbiol 10 :55–58.

    • Search Google Scholar
    • Export Citation
  • 9

    Smith T, Hii JL, Genton B, Muller I, Booth M, Gibson N, Narara A, Alpers MP, 2001. Associations of peak shifts in age–prevalence for human malarias with bednet coverage. Trans R Soc Trop Med Hyg 95 :1–6.

    • Search Google Scholar
    • Export Citation
  • 10

    Kasehagen LJ, Mueller I, McNamara DT, Bockarie MJ, Kiniboro B, Rare L, Lorry K, Kastens W, Reeder JC, Kazura JW, Zimmerman PA, 2006. Changing patterns of Plasmodium blood-stage infections in the Wosera region of Papua New Guinea monitored by light microscopy and high throughput PCR diagnosis. Am J Trop Med Hyg 75 :588–596.

    • Search Google Scholar
    • Export Citation
  • 11

    Cox MJ, Kum DE, Tavul L, Narara A, Raiko A, Baisor M, Alpers MP, Medley GF, Day KP, 1994. Dynamics of malaria parasitaemia associated with febrile illness in children from a rural area of Madang, Papua New Guinea. Trans R Soc Trop Med Hyg 88 :191–197.

    • Search Google Scholar
    • Export Citation
  • 12

    Hii JL, Smith T, Mai A, Ibam E, Alpers MP, 2000. Comparison between anopheline mosquitoes (Diptera: Culicidae) caught using different methods in a malaria endemic area of Papua New Guinea. Bull Entomol Res 90 :211–219.

    • Search Google Scholar
    • Export Citation
  • 13

    Arevalo-Herrera M, Herrera S, 2001. Plasmodium vivax malaria vaccine development. Mol Immunol 2001 :443–455.

  • 14

    Cole-Tobian JL, Cortes A, Baisor M, Kastens W, Xainli J, Bockarie M, Adams JH, King CL, 2002. Age-acquired immunity to a Plasmodium vivax invasion ligand, the duffy binding protein. J Infect Dis 186 :531–539.

    • Search Google Scholar
    • Export Citation
  • 15

    Michon P, Fraser T, Adams JH, 2000. Naturally acquired and vaccine-elicited antibodies block erythrocyte cytoadherence of the Plasmodium vivax Duffy binding protein. Infect Immun 68 :3164–3171.

    • Search Google Scholar
    • Export Citation
  • 16

    Mehlotra RK, Kasehagen LJ, Baisor M, Lorry K, Kazura JW, Bockarie MJ, Zimmerman PA, 2002. Malaria infections are randomly distributed in diverse holoendemic areas of Papua New Guinea. Am J Trop Med Hyg 67 :555–562.

    • Search Google Scholar
    • Export Citation
  • 17

    Burkot TR, Graves PM, Paru R, Wirtz RA, Heywood PF, 1988. Human malaria transmission studies in the Anopheles punctulatus complex in Papua New Guinea: sporozoite rates, inoculation rates, and sporozoite densities. Am J Trop Med Hyg 39 :135–144.

    • Search Google Scholar
    • Export Citation
  • 18

    Belkin JN, 1962. The Mosquitoes of the South Pacific (Diptera: Culicidae). Volume 1. Berkeley, CA: University of California Press.

  • 19

    Benet A, Mai A, Bockarie F, Lagog M, Zimmerman P, Alpers MP, Reeder JC, Bockarie MJ, 2004. Polymerase chain reaction diagnosis and the changing pattern of vector ecology and malaria transmission dynamics in Papua New Guinea. Am J Trop Med Hyg 71 :277–284.

    • Search Google Scholar
    • Export Citation
  • 20

    Wirtz RA, Burkot TR, Graves PM, Andre RG, 1987. Field evaluation of enzyme-linked immunosorbent assays for Plasmodium falciparum and Plasmodium vivax sporozoites in mosquitoes (Diptera: Culicidae) from Papua New Guinea. J Med Entomol 24 :433–437.

    • Search Google Scholar
    • Export Citation
  • 21

    McNamara DT, Kasehagen LJ, Grimberg BT, Cole-Tobian J, Collins WE, Zimmerman PA, 2006. Diagnosing infection levels of four human malaria parasite species by a polymerase chain reaction/ligase detection reaction fluorescent micro-sphere-based assay. Am J Trop Med Hyg 74 :413–421.

    • Search Google Scholar
    • Export Citation
  • 22

    McNamara DT, Thomson JM, Kasehagen LJ, Zimmerman PA, 2004. Development of a multiplex PCR-ligase detection reaction assay for diagnosis of infection by four human malaria parasite species. J. Clin. Microbol. 42 :2403–2410.

    • Search Google Scholar
    • Export Citation
  • 23

    Felger I, Beck HP, 2002. Genotyping of Plasmodium falciparum: RFLP analysis. Methods Mol Med 72 :117–129.

  • 24

    Irion A, Felger I, Abdulla S, Smith T, Mull R, Tanner M, Hatz C, Beck HP, 1998. Distinction of recrudescences from new infections by PCR-RFLP analysis in a comparative trial of CGP 56 697 and chloroquine in Tanzanian children. Trop Med Int Health 3 :490–497.

    • Search Google Scholar
    • Export Citation
  • 25

    Cole-Tobian J, Zimmerman PA, King CL, High throughput identification of the predominant malaria parasite clone in complex blood stage infections using a multi-SNP molecular haplotyping assay. Am J Trop Med Hyg76 :12–19.

  • 26

    Smith T, Genton B, Baea K, Gibson N, Taime J, Narara A, Al Yaman F, Beck HP, Hii J, Alpers M, 1994. Relationships between Plasmodium falciparum infection and morbidity in a highly endemic area. Parasitology 109 :539–549.

    • Search Google Scholar
    • Export Citation
  • 27

    Cattani JA, Tulloch JL, Vrbova H, Jolley D, Gibson FD, Moir JS, Heywood PF, Alpers MP, Stevenson A, Clancy R, 1986. The epidemiology of malaria in a population surrounding Madang, Papua New Guinea. Am J Trop Med Hyg 35 :3–15.

    • Search Google Scholar
    • Export Citation
  • 28

    Owusu-Agyei S, Binka F, Koram K, Anto F, Adjuik M, Nkrumah F, Smith T, 2002. Does radical cure of asymptomatic Plasmodium falciparum place adults in endemic areas at increased risk of recurrent symptomatic malaria? Trop Med Int Health 7 :599–603.

    • Search Google Scholar
    • Export Citation
  • 29

    Smith T, Felger I, Tanner M, Beck HP, 1999. Premunition in Plasmodium falciparum infection: insights from the epidemiology of multiple infections. Trans R Soc Trop Med Hyg 93 (Suppl 1):59–64.

    • Search Google Scholar
    • Export Citation
  • 30

    Maitland K, Williams AI, Bennett NM, Newbold C, Peto TE, Viji J, Timothy R, Clegg A, Weatherall DJ, 1996. The interaction of between Plasmodium falciparum and P. vivax in children on Espiritu Santo island, Vanuatu. Trans R Soc Trop Med Hyg 90 :614–620.

    • Search Google Scholar
    • Export Citation
  • 31

    Balfour MC, 1935. Malaria studies in Greece. Am J Trop Med Hyg 15 :301–329.

  • 32

    Earle WC, 1939. Epidemiology of malaria in Puerto Rico. Puerto Rico J Pub Health Trop Med 15 :3–27.

  • 33

    Ciuca M, Ballif L, Chelarescu-Vieru M, 1934. Immunity in Malaria. Trans R Soc Trop Med Hyg 6 :619–622.

  • 34

    Collins WE, Jeffery GM, Roberts JM, 2004. A retrospective examination of reinfection of humans with Plasmodium vivax. Am J Trop Med Hyg 70 :642–644.

    • Search Google Scholar
    • Export Citation
  • 35

    Collins WE, Jeffery GM, 1999. A retrospective examination of secondary sporozoite- and trophozoite-induced infections with Plasmodium falciparum: development of parasitologic and clinical immunity following secondary infection. Am J Trop Med Hyg 61 :20–35.

    • Search Google Scholar
    • Export Citation
  • 36

    Gunewardena DM, Carter R, Mendis KN, 1994. Patterns of acquired anti-malarial immunity in Sri Lanka. Mem Inst Oswaldo Cruz 89 :63–65.

  • 37

    Muller I, Smith T, Mellor S, Rare L, Genton B, 1998. The effect of distance from home on attendance at a small rural health centre in Papua New Guinea. Int J Epidemiol 27 :878–884.

    • Search Google Scholar
    • Export Citation
  • 38

    Oppenheimer SJ, Macfarlane SB, Moody JB, Bunari O, Williams TE, Harrison C, Hendrickse RG, 1984. Iron and infection in infancy–report on field studies in Papua New Guinea: 1. Demographic description and pilot surveys. Ann Trop Paediatr 4 :135–143.

    • Search Google Scholar
    • Export Citation
  • 39

    Wildig J, Michon P, Siba P, Mellombo M, Ura A, Mueller I, Cossart Y, 2006. Parvovirus B19 infection contributes to severe anemia in young children in Papua New Guinea. J Infect Dis 194 :146–153.

    • Search Google Scholar
    • Export Citation
  • 40

    McElroy PD, ter Kuile FO, Lal AA, Bloland PB, Hawley WA, Oloo AJ, Monto AS, Meshnick SR, Nahlen BL, 2000. Effect of Plasmodium falciparum parasitemia density on hemoglobin concentrations among full-term, normal birth weight children in western Kenya, IV. The Asembo Bay Cohort Project. Am J Trop Med Hyg 62 :504–512.

    • Search Google Scholar
    • Export Citation
  • 41

    Greenwood BM, Bradley AK, Greenwood AM, Byass P, Jammeh K, Marsh K, Tulloch S, Oldfield FS, Hayes R, 1987. Mortality and morbidity from malaria among children in a rural area of The Gambia, West Africa. Trans R Soc Trop Med Hyg 81 :478–486.

    • Search Google Scholar
    • Export Citation
  • 42

    Trape JF, Rogier C, Konate L, Diagne N, Bouganali H, Canque B, Legros F, Badji A, Ndiaye G, Ndiaye P, 1994. The Dielmo project: a longitudinal study of natural malaria infection and the mechanisms of protective immunity in a community living in a holoendemic area of Senegal. Am J Trop Med Hyg 51 :123–137.

    • Search Google Scholar
    • Export Citation
  • 43

    Faye FB, Konate L, Rogier C, Trape JF, 1998. Plasmodium ovale in a highly malaria endemic area of Senegal. Trans R Soc Trop Med Hyg 92 :522–525.

    • Search Google Scholar
    • Export Citation
  • 44

    Williams TN, Maitland K, Bennett S, Ganczakowski M, Peto TE, Newbold CI, Bowden DK, Weatherall DJ, Clegg JB, 1996. High incidence of malaria in alpha-thalassaemic children. Nature 383 :522–525.

    • Search Google Scholar
    • Export Citation
  • 45

    Mayxay M, Pukrittayakamee S, Newton PN, White NJ, 2004. Mixed-species malaria infections in humans. Trends Parasitol 20 :233–240.

  • 46

    Snounou G, White NJ, 2004. The co-existence of Plasmodium: sidelights from falciparum and vivax malaria in Thailand. Trends Parasitol 20 :333–339.

    • Search Google Scholar
    • Export Citation
  • 47

    Smith T, Genton B, Baea K, Gibson N, Narara A, Alpers MP, 2001. Prospective risk of morbidity in relation to malaria infection in an area of high endemicity of multiple species of Plasmodium.Am J Trop Med Hyg 64 :262–267.

    • Search Google Scholar
    • Export Citation
  • 48

    McKenzie FE, Bossert WH, 1997. Mixed-species Plasmodium infections of humans. J Parasitol 83 :593–600.

  • 49

    Bruce MC, Donnelly CA, Packer M, Lagog M, Gibson N, Narara A, Walliker D, Alpers MP, Day KP, 2000. Age- and species-specific duration of infection in asymptomatic malaria infections in Papua New Guinea. Parasitology 121 :247–256.

    • Search Google Scholar
    • Export Citation
  • 50

    Bruce MC, Galinski MR, Barnwell JW, Donnelly CA, Walmsley M, Alpers MP, Walliker D, Day KP, 2000. Genetic diversity and dynamics of Plasmodium falciparum and P. vivax populations in multiply infected children with asymptomatic malaria infections in Papua New Guinea. Parasitology 121 :257–272.

    • Search Google Scholar
    • Export Citation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Restricted access

In a treatment re-infection study of 206 Papua New Guinean school children, we examined risk of reinfection and symptomatic malaria caused by different Plasmodium species. Although children acquired a similar number of polymerase chain reaction–detectable Plasmodium falciparum and P. vivax infections in six months of active follow-up (P. falciparum = 5.00, P. vivax = 5.28), they were 21 times more likely to develop symptomatic P. falciparum malaria (1.17/year) than P. vivax malaria (0.06/year). Children greater than nine years of age had a reduced risk of acquiring P. vivax infections of low-to-moderate (>150/μL) density (adjusted hazard rate [AHR] = 0.65 and 0.42), whereas similar reductions in risk with age of P. falciparum infection was only seen for parasitemias > 5,000/μL (AHR = 0.49) and symptomatic episodes (AHR = 0.51). Infection and symptomatic episodes with P. malariae and P. ovale were rare. By nine years of age, children have thus acquired almost complete clinical immunity to P. vivax characterized by a very tight control of parasite density, whereas the acquisition of immunity to symptomatic P. falciparum malaria remained incomplete. These observations suggest that different mechanisms of immunity may be important for protection from these malaria species.

Author Notes

Reprint requests: Ivo Mueller, Papua New Guinea Institute of Medical Research, PO Box 378, Madang, MAD 511, Papua New Guinea, Telephone: 675-8522909, Fax: 675-852-3289, E-mail: pngimr_ivo@datec.net.pg.
Save