USE OF MULTIPLE DISPLACEMENT AMPLIFICATION TO INCREASE THE DETECTION AND GENOTYPING OF TRYPANOSOMA SPECIES SAMPLES IMMOBILIZED ON FTA FILTERS

LIAM J. MORRISON Wellcome Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom; Institut de Recherche pour le Développement, UR 177 Trypanosomoses Africaines, Montpellier, France; Institut de Recherche pour le Développement, UR 177 Trypanosomoses Africaines, Luanda, Angola; Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, United Kingdom

Search for other papers by LIAM J. MORRISON in
Current site
Google Scholar
PubMed
Close
,
GILLIAN MCCORMACK Wellcome Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom; Institut de Recherche pour le Développement, UR 177 Trypanosomoses Africaines, Montpellier, France; Institut de Recherche pour le Développement, UR 177 Trypanosomoses Africaines, Luanda, Angola; Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, United Kingdom

Search for other papers by GILLIAN MCCORMACK in
Current site
Google Scholar
PubMed
Close
,
LINDSAY SWEENEY Wellcome Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom; Institut de Recherche pour le Développement, UR 177 Trypanosomoses Africaines, Montpellier, France; Institut de Recherche pour le Développement, UR 177 Trypanosomoses Africaines, Luanda, Angola; Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, United Kingdom

Search for other papers by LINDSAY SWEENEY in
Current site
Google Scholar
PubMed
Close
,
ANNE C.L. LIKEUFACK Wellcome Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom; Institut de Recherche pour le Développement, UR 177 Trypanosomoses Africaines, Montpellier, France; Institut de Recherche pour le Développement, UR 177 Trypanosomoses Africaines, Luanda, Angola; Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, United Kingdom

Search for other papers by ANNE C.L. LIKEUFACK in
Current site
Google Scholar
PubMed
Close
,
PHILIPPE TRUC Wellcome Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom; Institut de Recherche pour le Développement, UR 177 Trypanosomoses Africaines, Montpellier, France; Institut de Recherche pour le Développement, UR 177 Trypanosomoses Africaines, Luanda, Angola; Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, United Kingdom

Search for other papers by PHILIPPE TRUC in
Current site
Google Scholar
PubMed
Close
,
C. MICHAEL TURNER Wellcome Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom; Institut de Recherche pour le Développement, UR 177 Trypanosomoses Africaines, Montpellier, France; Institut de Recherche pour le Développement, UR 177 Trypanosomoses Africaines, Luanda, Angola; Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, United Kingdom

Search for other papers by C. MICHAEL TURNER in
Current site
Google Scholar
PubMed
Close
,
ANDY TAIT Wellcome Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom; Institut de Recherche pour le Développement, UR 177 Trypanosomoses Africaines, Montpellier, France; Institut de Recherche pour le Développement, UR 177 Trypanosomoses Africaines, Luanda, Angola; Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, United Kingdom

Search for other papers by ANDY TAIT in
Current site
Google Scholar
PubMed
Close
, and
ANNETTE MACLEOD Wellcome Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom; Institut de Recherche pour le Développement, UR 177 Trypanosomoses Africaines, Montpellier, France; Institut de Recherche pour le Développement, UR 177 Trypanosomoses Africaines, Luanda, Angola; Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, United Kingdom

Search for other papers by ANNETTE MACLEOD in
Current site
Google Scholar
PubMed
Close
Restricted access

Whole genome amplification methods are a recently developed tool for amplifying DNA from limited template. We report its application in trypanosome infections, characterized by low parasitemias. Multiple displacement amplification (MDA) amplifies DNA with a simple in vitro step and was evaluated on mouse blood samples on FTA filter cards with known numbers of Trypanosoma brucei parasites. The data showed a 20-fold increase in the number of PCRs possible per sample, using primers diagnostic for the multicopy ribosomal ITS region or 177-bp repeats, and a 20-fold increase in sensitivity over nested PCR against a single-copy microsatellite. Using MDA for microsatellite genotyping caused allele dropout at low DNA concentrations, which was overcome by pooling multiple MDA reactions. The validity of using MDA was established with samples from Human African Trypanosomiasis patients. The use of MDA allows maximal use of finite DNA samples and may prove a valuable tool in studies where multiple reactions are necessary, such as population genetic analyses.

Author Notes

Reprint requests: Liam Morrison, Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, 120 University Place, Glasgow G12 9LP, United Kingdom, Telephone: +44 141 330 5616, Fax: +44 141 330 5422, E-mail: lm78y@udcf.gla.ac.uk.
  • 1

    Magnus E, Vervoort T, Van Meirvenne N, 1978. A card-agglutination test with stained trypanosomes (C.A.T.T.) for the serological diagnosis of T. b. gambiense trypanosomiasis. Ann Soc Belg Med Trop 58 :169–176.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2

    WHO, 2006. Human African trypanosomiasis (sleeping sickness): epidemiological update. Wkly Epidemiol Rec 81 :71–80.

  • 3

    Kanmogne GD, Asonganyi T, Gibson WC, 1996. Detection of Trypanosoma brucei gambiense, in serologically positive but aparasitaemic sleeping-sickness suspects in Cameroon, by PCR. Ann Trop Med Parasitol 90 :475–483.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4

    Penchenier L, Simo G, Grebaut P, Nkinin S, Laveissiere C, Herder S, 2000. Diagnosis of human trypanosomiasis, due to Trypanosoma brucei gambiense in central Africa, by the polymerase chain reaction. Trans R Soc Trop Med Hyg 94 :392–394.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5

    Koffi M, Solano P, Denizot M, Courtin D, Garcia A, Lejon V, Buscher P, Cuny G, Jamonneau V, 2006. Aparasitemic serological suspects in Trypanosoma brucei gambiense human African trypanosomiasis: a potential human reservoir of parasites? Acta Trop 98 :183–188.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6

    Clausen PH, Wiemann A, Patzelt R, Kakaire D, Poetzsch C, Peregrine A, Mehlitz D, 1998. Use of a PCR assay for the specific and sensitive detection of Trypanosoma spp. in naturally infected dairy cattle in peri-urban Kampala, Uganda. Ann NY Acad Sci 849 :21–31.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7

    Odiit M, Coleman PG, Liu WC, McDermott JJ, Fevre EM, Welburn SC, Woolhouse ME, 2005. Quantifying the level of under-detection of Trypanosoma brucei rhodesiense sleeping sickness cases. Trop Med Int Health 10 :840–849.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8

    Truc P, Bailey JW, Doua F, Laveissiere C, Godfrey DG, 1994. A comparison of parasitological methods for the diagnosis of Gambian trypanosomiasis in an area of low endemicity in Cote d’Ivoire. Trans R Soc Trop Med Hyg 88 :419–421.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9

    Jamonneau V, Barnabe C, Koffi M, Sane B, Cuny G, Solano P, 2003. Identification of Trypanosoma brucei circulating in a sleeping sickness focus in Cote d’Ivoire: assessment of genotype selection by the isolation method. Infect Genet Evol 3 :143–149.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10

    Lasken RS, Egholm M, 2003. Whole genome amplification: abundant supplies of DNA from precious samples or clinical specimens. Trends Biotechnol 21 :531–535.

  • 11

    Dean FB, Hosono S, Fang L, Wu X, Faruqi AF, Bray-Ward P, Sun Z, Zong Q, Du Y, Du J, Driscoll M, Song W, Kingsmore SF, Egholm M, Lasken RS, 2002. Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci USA 99 :5261–5266.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12

    Jiang Z, Zhang X, Deka R, Jin L, 2005. Genome amplification of single sperm using multiple displacement amplification. Nucleic Acids Res 33 :e91.

  • 13

    Esteban JA, Salas M, Blanco L, 1993. Fidelity of phi 29 DNA polymerase. Comparison between protein-primed initiation and DNA polymerization. J Biol Chem 268 :2719–2726.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14

    Handyside AH, Robinson MD, Simpson RJ, Omar MB, Shaw MA, Grudzinskas JG, Rutherford A, 2004. Isothermal whole genome amplification from single and small numbers of cells: a new era for preimplantation genetic diagnosis of inherited disease. Mol Hum Reprod 10 :767–772.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15

    Bergen AW, Qi Y, Haque KA, Welch RA, Chanock SJ, 2005. Effects of DNA mass on multiple displacement whole genome amplification and genotyping performance. BMC Biotechnol 5 :24.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16

    Njiru ZK, Constantine CC, Guya S, Crowther J, Kiragu JM, Thompson RC, Davila AM, 2005. The use of ITS1 rDNA PCR in detecting pathogenic African trypanosomes. Parasitol Res 95 :186–192.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17

    Cox A, Tilley A, McOdimba F, Fyfe J, Eisler M, Hide G, Welburn S, 2005. A PCR based assay for detection and differentiation of African trypanosome species in blood. Exp Parasitol 111 :24–29.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    Masiga DK, Smyth AJ, Hayes P, Bromidge TJ, Gibson WC, 1992. Sensitive detection of trypanosomes in tsetse flies by DNA amplification. Int J Parasitol 22 :909–918.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19

    MacLeod A, Tweedie A, McLellan S, Taylor S, Hall N, Berriman M, El-Sayed NM, Hope M, Turner CM, Tait A, 2005. The genetic map and comparative analysis with the physical map of Trypanosoma brucei.Nucleic Acids Res 33 :6688–6693.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20

    Woo PT, 1970. The haematocrit centrifuge technique for the diagnosis of African trypanosomiasis. Acta Trop 27 :384–386.

  • 21

    Al-Soud WA, Radstrom P, 2001. Purification and characterization of PCR-inhibitory components in blood cells. J Clin Microbiol 39 :485–493.

  • 22

    Lovmar L, Syvanen AC, 2006. Multiple displacement amplification to create a long-lasting source of DNA for genetic studies. Hum Mutat 27 :603–614.

  • 23

    Wickstead B, Ersfeld K, Gull K, 2004. The small chromosomes of Trypanosoma brucei involved in antigenic variation are constructed around repetitive palindromes. Genome Res 14 :1014–1024.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24

    Desquesnes M, Davila AM, 2002. Applications of PCR-based tools for detection and identification of animal trypanosomes: a review and perspectives. Vet Parasitol 109 :213–231.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25

    Welburn SC, Picozzi K, Fevre EM, Coleman PG, Odiit M, Carrington M, Maudlin I, 2001. Identification of human-infective trypanosomes in animal reservoir of sleeping sickness in Uganda by means of serum-resistance-associated (SRA) gene. Lancet 358 :2017–2019.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    Radwanska M, Claes F, Magez S, Magnus E, Perez-Morga D, Pays E, Buscher P, 2002. Novel primer sequences for polymerase chain reaction-based detection of Trypanosoma brucei gambiense.Am J Trop Med Hyg 67 :289–295.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27

    Picozzi K, Fevre EM, Odiit M, Carrington M, Eisler MC, Maudlin I, Welburn SC, 2005. Sleeping sickness in Uganda: a thin line between two fatal diseases. BMJ 331 :1238–1241.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28

    MacLeod A, Tait A, Turner CM, 2001. The population genetics of Trypanosoma brucei and the origin of human infectivity. Philos Trans R Soc Lond B Biol Sci 356 :1035–1044.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29

    Jamonneau V, Garcia A, Frezil JL, N’Guessan P, N’Dri L, Sanon R, Laveissiere C, Truc P, 2000. Clinical and biological evolution of human trypanosomiasis in Cote d’Ivoire. Ann Trop Med Parasitol 94 :831–835.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30

    Jamonneau V, Garcia A, Ravel S, Cuny G, Oury B, Solano P, N’Guessan P, N’Dri L, Sanon R, Frezil JL, Truc P, 2002. Genetic characterization of Trypanosoma brucei gambiense and clinical evolution of human African trypanosomiasis in Cote d’Ivoire. Trop Med Int Health 7 :610–621.

    • PubMed
    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 268 216 8
Full Text Views 412 9 5
PDF Downloads 50 6 2
 

 

 

 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save