THE ANOPHELES GAMBIAE VITELLOGENIN GENE (VGT2) PROMOTER DIRECTS PERSISTENT ACCUMULATION OF A REPORTER GENE PRODUCT IN TRANSGENIC ANOPHELES STEPHENSI FOLLOWING MULTIPLE BLOODMEALS

XIAO-GUANG CHEN Department of Parasitology, School of Public Health and Tropical Medicine, Southern Medical University, Guang Zhou, GD 510515, P.R. China; Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697-3900; Department of Microbiology & Molecular Genetics, University of California, CA 92697-4025

Search for other papers by XIAO-GUANG CHEN in
Current site
Google Scholar
PubMed
Close
,
OSVALDO MARINOTTI Department of Parasitology, School of Public Health and Tropical Medicine, Southern Medical University, Guang Zhou, GD 510515, P.R. China; Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697-3900; Department of Microbiology & Molecular Genetics, University of California, CA 92697-4025

Search for other papers by OSVALDO MARINOTTI in
Current site
Google Scholar
PubMed
Close
,
LUCIA WHITMAN Department of Parasitology, School of Public Health and Tropical Medicine, Southern Medical University, Guang Zhou, GD 510515, P.R. China; Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697-3900; Department of Microbiology & Molecular Genetics, University of California, CA 92697-4025

Search for other papers by LUCIA WHITMAN in
Current site
Google Scholar
PubMed
Close
,
NIJOLE JASINSKIENE Department of Parasitology, School of Public Health and Tropical Medicine, Southern Medical University, Guang Zhou, GD 510515, P.R. China; Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697-3900; Department of Microbiology & Molecular Genetics, University of California, CA 92697-4025

Search for other papers by NIJOLE JASINSKIENE in
Current site
Google Scholar
PubMed
Close
, and
ANTHONY A. JAMES Department of Parasitology, School of Public Health and Tropical Medicine, Southern Medical University, Guang Zhou, GD 510515, P.R. China; Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697-3900; Department of Microbiology & Molecular Genetics, University of California, CA 92697-4025

Search for other papers by ANTHONY A. JAMES in
Current site
Google Scholar
PubMed
Close
Restricted access

Mosquitoes made resistant to pathogens through genetic engineering are proposed as a basis for developing a strategy to control disease transmission. Transgenic approaches that introduce exogenous antipathogen effector genes into mosquito genomes require cis-acting regulatory DNA to control tissue-, stage-, and sex-specific transgene expression. We show that control sequences derived from a vitellogenin-encoding gene of Anopheles gambiae, a major vector in sub-Saharan Africa, can direct expression of an exogenous gene in a tissue-, stage-, and sex-specific manner in Anopheles stephensi, a vector of urban malaria in southern Asia. Specific reporter gene expression was observed in fat-body tissues of transgenic blood-fed females, but not in transgenic males or non-blood-fed transgenic females. Multiple bloodmeals resulted in the continuous presence of reporter gene transcripts for at least 12 days. The persistent expression makes the heterologous promoter a good candidate for controlling transcription of engineered antipathogen effector genes in this important malaria vector.

Author Notes

Reprint requests: Anthony A. James, Department of Molecular Biology & Biochemistry, 3205 McGaugh Hall, University of California, Irvine CA 92697-3900, Telephone: +1 (949) 824-5930, Fax: +1 (949) 824-2814, E-mail: aajames@uci.edu.
  • 1

    Collins FH, James AA, 1996. Genetic modification of mosquitoes. Sci Med (Phila) 3 :52–61.

  • 2

    Nirmala X, James AA, 2003. Engineering Plasmodium-refractory phenotypes in mosquitoes. Trends Parasitol 19 :384–387.

  • 3

    Riehle MA, Srinivasan P, Moreira CK, Jacobs-Lorena M, 2003. Towards genetic manipulation of wild mosquito populations to combat malaria: advances and challenges. J Exp Biol 206 :3809–3816.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4

    Nirmala X, Marinotti O, James AA, 2005. The accumulation of specific mRNAs following multiple blood meals in Anopheles gambiae.Insect Mol Biol 14 :95–103.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5

    Moreira LA, Edwards MJ, Adhami F, Jasinskiene N, James AA, Jacobs-Lorena M, 2000. Robust gut-specific gene expression in transgenic Aedes aegypti mosquitoes. Proc Natl Acad Sci USA 97 :10895–10898.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6

    Kim W, Koo H, Richman AM, Seeley D, Vizioli J, Klocko AD, O’Brochta DA, 2004. Ectopic expression of a cecropin transgene in the human malaria vector mosquito Anopheles gambiae (Diptera: Culicidae): effects on susceptibility to Plasmodium.J Med Entomol 41 :447–455.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7

    Yoshida S, Watanabe H, 2006. Robust salivary gland-specific transgene expression in Anopheles stephensi mosquito. Insect Mol Biol 15 :403–410.

  • 8

    Nirmala X, Marinotti O, Sandoval JM, Phin S, Gakhar S, Jasinskiene N, James AA, 2006. Functional characterization of the promoter of the vitellogenin gene, AsVg1, of the malaria vector, Anopheles stephensi.Insect Biochem Mol Biol 36 :694–700.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9

    Munoz D, Jimenez A, Marinotti O, James AA, 2004. The Ae-Act-4 gene is expressed in the developing flight muscles of female Aedes aegypti.Insect Mol Biol 13 :563–568.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10

    Catteruccia F, Benton JP, Crisanti A, 2005. An Anopheles transgenic sexing strain for vector control. Nat Biotechnol 23 :1414–1417.

  • 11

    Ghosh AK, Moreira LA, Jacobs-Lorena M, 2002. Plasmodium–mosquito interactions, phage display libraries and transgenic mosquitoes impaired for malaria transmission. Insect Biochem Mol Biol 32 :1325–1331.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12

    Briegel H, Horler, E, 1993. Multiple blood meals as a reproductive strategy in Anopheles (Diptera: Culicidae) [Erratum in J Med Entomol 31: 321]. J Med Entomol 30 :975–985.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13

    Horn C, Wimmer EA, 2000. A versatile vector set for animal transgenesis. Dev Genes Evol 210 :630–637.

  • 14

    Horn C, Schmid BG, Pogoda FS, Wimmer EA, 2002. Fluorescent transformation markers for insect transgenesis. Insect Biochem Mol Biol 32 :1221–1235.

  • 15

    Ito J, Ghosh A, Moreira LA, Wimmer EA, Jacobs-Lorena M, 2002. Transgenic Anopheline mosquitoes impaired in transmission of a malaria parasite. Nature 417 :452–455.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16

    Sambrook J, Fritsch EF, Maniatis T, 1989. Molecular Cloning. A Laboratory Manual. Plainview, NY: Cold Spring Harbor Laboratory Press.

    • PubMed
    • Export Citation
  • 17

    Church GM, Gilbert W, 1984. Genomic sequencing. Proc Natl Acad Sci USA 81 :1991–1995.

  • 18

    Abraham EG, Islam S, Srinivasan P, Ghosh AK, Valenzuela JG, Ribeiro JMC, Kafatos FC, Dimopoulos G, Jacobs-Lorena M, 2004. Analysis of the Plasmodium and Anopheles transcriptional repertoire during ookinete development and midgut invasion. J Biol Chem 279 :5573–5580.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19

    Laemmli UK, 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227 :680–685.

  • 20

    Clements AN, 1992. The Biology of Mosquitoes, Vol. 1: Development, Nutrition and Reproduction. London: Chapman and Hall, 408–423.

    • PubMed
    • Export Citation
  • 21

    Cherbas L, Cherbas P, 1993. The arthropod initiator: the capsite consensus plays in an important role in transcription. Insect Mol Biol 23 :81–90.

  • 22

    Raikhel AS, Kokoza VA, Zhu J, Martin D, Wang SF, Li C, Sun G, Ahmed A, Dittmer N, Attardo G, 2002. Molecular biology of mosquito vitellogenesis: from basic studies to genetic engineering of antipathogen immunity. Insect Biochem Mol Biol 32 :1275–1286.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23

    Schneider DS, James AA, 2006. Bridging the gaps in vector biology. Workshop on the Molecular and Population Biology of Mosquitoes and Other Disease Vectors. EMBO Rep 7 :259–262.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24

    James AA, 2005. Gene drive systems in mosquitoes: rules of the road. Trends Parasitol 21 :64–67.

  • 25

    Lane RP, Crosskey RW. 1993. Medical Insects and Arachnids. First edition. London: Chapman and Hall, 145.

    • PubMed
    • Export Citation
  • 26

    Abraham EG, Donnelly-Doman M, Fujioka H, Ghosh A, Moreira L, Jacobs-Lorena M, 2005. Driving midgut-specific expression and secretion of a foreign protein in transgenic mosquitoes with AgAper1 regulatory elements. Insect Mol Biol 14 :271–279.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27

    Lombardo F, Nolan T, Lycett G, Lanfrancotti A, Stich N, Catteruccia F, Louis C, Coluzzi M, Arca B, 2005. An Anopheles gambiae salivary gland promoter analysis in Drosophila melanogaster and Anopheles stephensi.Insect Mol Biol 14 :207–216.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28

    Moreira LA, Ito J, Ghosh A, Devenport M, Zieler H, Abraham EG, Crisanti A, Nolan T, Catteruccia F, Jacobs-Lorena M, 2002. Bee venom phospholipase inhibits malaria parasite development in transgenic mosquitoes. J Biol Chem 277 :40839–40843.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29

    Skavdis G, Siden-Kiamos I, Muller HM, Crisanti A, Louis C, 1996. Conserved function of Anopheles gambiae midgut-specific promoters in the fruit fly. EMBO J 15 :344–350.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30

    Lombardo F. Di Cristina M, Spanos L, Coluzzi LC, 2000. Promoter sequences of the putative Anopheles gambiae apyrase confer salivary gland expression in Drosophila melanogaster.J Biol Chem 275 :23861–23868.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31

    Raikhel AS, 2005. Vitellogenesis of disease vectors, from physiology to genes. In: Marquardt WC, ed. Biology of Disease Vectors. Second edition. Burlington, MA: Elsevier Academic Press, 329–346.

    • PubMed
    • Export Citation
  • 32

    Kokoza VA, Ahmed A, Cho WL, Jasinskiene N, James AA, Raikhel AS, 2000. Engineering blood meal-activated systemic immunity in the yellow fever mosquito, Aedes aegypti.Proc Natl Acad Sci USA 97 :9144–9149.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33

    Kokoza VA, Martin M, Mienaltowski MJ, Ahmed A, Morton CM, Raikhel AS, 2001. Transcriptional regulation of the mosquito vitellogenin gene via a blood meal-triggered cascade. Gene 274 :47–65.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34

    Shin SW, Kokoza VA, Raikhel AS, 2003. Transgenesis and reverse genetics of mosquito innate immunity. J Exp Biol 206 :3835–3843.

  • 35

    Marinotti O, Calvo E, Nguyen QK, Dissanayake S, Ribeiro JMJ, James AA, 2006. Genome-wide analysis of gene expression in adult Anopheles gambiae.Insect Mol Biol 15 :1–12.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36

    Redfern CPF, 1982. 20-Hydroxyecdysone and ovarian development in Anopheles stephensi.J Insect Physiol 28 :97–103.

  • 37

    Jahan NH, Hurd H, 1998. Effect of Plasmodium yoelii nigeriensis (Haemosporidia: Plasmodiidae) on Anopheles stephensi (Diptera: Culicidae) vitellogenesis. J Med Entomol 35 :956–961.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38

    Ahmed AM, Maingon R, Romans P, Hurd H, 2001. Effects of malaria infection on vitellogenesis in Anopheles gambiae during two gonotrophic cycles. Insect Mol Biol 10 :347–356.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39

    Newbury SF, 2006. Control of mRNA stability in eukaryotes. Biochem Soc Trans 34 :30–34.

  • 40

    Koella JC, Sorensen FL, Anderson RA, 1998. The malaria parasite, Plasmodium falciparum, increases the frequency of multiple feeding of its mosquito vector, Anopheles gambiae. Proc R Soc Lond B Biol Sci 265 :763–768.

    • PubMed
    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 222 164 6
Full Text Views 285 16 5
PDF Downloads 86 10 2
 

 

 

 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save