• 1

    World Health Organization, 2002. Prevention and control of schistosomiasis and soil-transmitted helminthiasis: report of a WHO expert committee. WHO Tech Rep Ser 912 :1–57.

    • Search Google Scholar
    • Export Citation
  • 2

    King CH, Dickman K, Tisch DJ, 2005. Reassessment of the cost of chronic helmintic infection: a meta-analysis of disability-related outcomes in endemic schistosomiasis. Lancet 365 :1561–1569.

    • Search Google Scholar
    • Export Citation
  • 3

    Utzinger J, Keiser J, 2004. Schistosomiasis and soil-transmitted helminthiasis: common drugs for treatment and control. Expert Opin Pharmacother 5 :263–285.

    • Search Google Scholar
    • Export Citation
  • 4

    Gryseels B, Polman K, Clerinx J, Kestens L, 2006. Human schistosomiasis. Lancet 368 :1106–1118.

  • 5

    Steinmann P, Keiser J, Bos R, Tanner M, Utzinger J, 2006. Schistosomiasis and water resources development: systematic review, meta-analysis, and estimates of people at risk. Lancet Infect Dis 6 :411–425.

    • Search Google Scholar
    • Export Citation
  • 6

    Bavia ME, Malone JB, Hale L, Dantas A, Marroni L, Reis R, 2001. Use of thermal and vegetation index data from earth observing satellites to evaluate the risk of schistosomiasis in Bahia, Brazil. Acta Trop 79 :79–85.

    • Search Google Scholar
    • Export Citation
  • 7

    Fenwick A, Keiser J, Utzinger J, 2006. Epidemiology, burden and control of schistosomiasis with particular consideration to past and current treatment trends. Drugs Fut 31 :413–425.

    • Search Google Scholar
    • Export Citation
  • 8

    Clennon JA, King CH, Muchiri EM, Kariuki HC, Ouma JH, Mungai P, Kitron U, 2004. Spatial patterns of urinary schistosomiasis infection in a highly endemic area of coastal Kenya. Am J Trop Med Hyg 70 :443–448.

    • Search Google Scholar
    • Export Citation
  • 9

    Clements ACA, Lwambo NJS, Blair L, Nyandindi U, Kaatano G, Kinung’hi S, Webster JP, Fenwick A, Brooker S, 2006. Bayesian spatial analysis and disease mapping: tools to enhance planning and implementation of a schistosomiasis control programme in Tanzania. Trop Med Int Health 11 :490–503.

    • Search Google Scholar
    • Export Citation
  • 10

    Raso G, Matthys B, N’Goran EK, Tanner M, Vounatsou P, Utzinger J, 2005. Spatial risk prediction and mapping of Schistosoma mansoni infections among schoolchildren living in western Côte d’Ivoire. Parasitology 131 :97–108.

    • Search Google Scholar
    • Export Citation
  • 11

    Raso G, Vounatsou P, Gosoniu L, Tanner M, N’Goran EK, Utzinger J, 2006. Risk factors and spatial patterns of hookworm infection among schoolchildren in a rural area of western Côte d’Ivoire. Int J Parasitol 36 :201–210.

    • Search Google Scholar
    • Export Citation
  • 12

    Wright R, Garbeil H, Baloga SM, Mouginis-Mark PJ, 2006. An assessment of shuttle radar topography mission digital elevation data for studies of volcano morphology. Remote Sens Environ 105 :41–53.

    • Search Google Scholar
    • Export Citation
  • 13

    Rabus B, Eineder M, Roth A, Bamler R, 2003. The shuttle radar topography mission-a new class of digital elevation models acquired by spaceborne radar. ISPRS-J Photogramm Remote Sens 57 :241–262.

    • Search Google Scholar
    • Export Citation
  • 14

    Doumenge JP, Mott KE, Cheung C, Villenave D, Chapuis O, Perrin MF, Read-Thomas G, 1987. Atlas of the Global Distribution of Schistosomiasis. Geneva: World Health Organization.

  • 15

    Raso G, Utzinger J, Silué KD, Ouattara M, Yapi A, Toty A, Matthys B, Vounatsou P, Tanner M, N’Goran EK, 2005. Disparities in parasitic infections, perceived ill health and access to health care among poorer and less poor schoolchildren of rural Côte d’Ivoire. Trop Med Int Health 10 :42–57.

    • Search Google Scholar
    • Export Citation
  • 16

    Strahler A, Strahler A, 2005. Physical Geography: Science and Systems of the Human Environment. New York: John Wiley & Sons.

  • 17

    Brown DS, 1994. Freshwater Snails of Africa and Their Medical Importance. London: Taylor and Francis.

  • 18

    Jensen SK, Domingue JO, 1988. Extracting topographic structure from digital elevation data for geographic information system analysis. Photogramm Eng Remote Sens 54 :1593–1600.

    • Search Google Scholar
    • Export Citation
  • 19

    Strahler AN, 1952. Hypsometric (area-altitude) analysis of erosional topography. Geol Soc Am Bull 63 :1117–1141.

  • 20

    Strahler AN, 1957. Quantitative analysis of watershed geomorphology. EOS Trans Am Geophys Union 38 :913–920.

  • 21

    Gorokhovich Y, Voustianiouk A, 2006. Accuracy assessment of the processed SRTM-based elevation data by CGIAR using field data from USA and Thailand and its relation to the terrain characteristics. Remote Sens Environ 104 :409–415.

    • Search Google Scholar
    • Export Citation
  • 22

    Ecker MD, Gelfand AE, 1997. Bayesian variogram modeling for an isotropic spatial process. J Agric Biol Environ Stat 2 :347–369.

  • 23

    Banerjee S, Gelfand AE, Knight JR, Sirmans CF, 2004. Spatial modeling of house prices using normalized distance-weighted sums of stationary processes. J Bus Econ Stat 22 :206–213.

    • Search Google Scholar
    • Export Citation
  • 24

    Raso G, Vounatsou P, Singer BH, N’Goran EK, Tanner M, Utzinger J, 2006. An integrated approach for risk profiling and spatial prediction of Schistosoma mansoni-hookworm co-infection. Proc Natl Acad Sci USA 103 :6934–6939.

    • Search Google Scholar
    • Export Citation
  • 25

    Gelfand AE, Smith AFM, 1990. Sampling-based approaches to calculating marginal densities. J Am Stat Assoc 85 :398–409.

  • 26

    Spiegelhalter DJ, Best NG, Carlin BP, Linde AVD, 2002. Bayesian measures of model complexity and fit. J R Stat Soc Ser B Stat Methodol 64 :583–616.

    • Search Google Scholar
    • Export Citation
  • 27

    Diggle PJ, Tawn JA, Moyeed RA, 1998. Model-based geostatistics. Appl Stat 47 :299–350.

  • 28

    Gosoniu L, Vounatsou P, Sogoba N, Smith T, 2006. Bayesian modelling of geostatistical malaria risk data. Geospatial Health 1 :127–139.

  • 29

    Rytkönen MJ, 2004. Not all maps are equal: GIS and spatial analysis in epidemiology. Int J Circumpolar Health 63 :9–24.

  • 30

    Chatelain C, Gautier L, Spichiger R, 1996. A recent history of forest fragmentation in southwestern Ivory Coast. Biodivers Conserv 5 :37–53.

    • Search Google Scholar
    • Export Citation
  • 31

    Hay SI, 2000. An overview of remote sensing and geodesy for epidemiology and public health application. Adv Parasitol 47 :1–35.

  • 32

    Brooker S, Michael E, 2000. The potential of geographical information systems and remote sensing in the epidemiology and control of human helminth infections. Adv Parasitol 47 :245–288.

    • Search Google Scholar
    • Export Citation
  • 33

    Kabatereine NB, Brooker S, Tukahebwa EM, Kazibwe F, Onapa AW, 2004. Epidemiology and geography of Schistosoma mansoni in Uganda: implications for planning control. Trop Med Int Health 9 :372–380.

    • Search Google Scholar
    • Export Citation
  • 34

    Appleton CC, 1978. Review of literature on abiotic factors influencing the distribution and life dynamics, and control. Malacol Rev 11 :1–25.

    • Search Google Scholar
    • Export Citation
  • 35

    Kloos H, de Souza C, Gazzinelli A, Soares BS, Temba PD, Bethony J, Page K, Grzywacz C, Lewis F, Minchella D, LoVerde P, Oliveira RC, 2001. The distribution of Biomphalaria spp. in different habitats in relation to physical, biological, water contact and cognitive factors in a rural area in Minas Gerais, Brazil. Mem Inst Oswaldo Cruz 96 :57–66.

    • Search Google Scholar
    • Export Citation
  • 36

    Shreve RL, 1966. Statistical law of stream numbers. J Geol 74 :17–37.

  • 37

    Beven K, Kirkby MJ, 1979. A physically based, variable contributing area model of basin hydrology. Hydrolog Sci Bull 24 :43–69.

  • 38

    Sørensen R, Zinko U, Seibert J, 2006. On the calculation of the topographic wetness index: evaluation of different methods based on field observations. Hydrol Earth Syst Sci 10 :101–112.

    • Search Google Scholar
    • Export Citation
  • 39

    Staubach C, Thulke HH, Tackmann K, Hugh-Jones M, Conraths FJ, 2001. Geographic information system-aided analysis of factors associated with the spatial distribution of Echinococcus multilocularis infections of foxes. Am J Trop Med Hyg 65 :943–948.

    • Search Google Scholar
    • Export Citation
 
 
 

 

 
 
 

 

 

 

 

 

 

BAYESIAN SPATIAL RISK PREDICTION OF SCHISTOSOMA MANSONI INFECTION IN WESTERN CÔTE D’IVOIRE USING A REMOTELY-SENSED DIGITAL ELEVATION MODEL

View More View Less
  • 1 Department of Public Health and Epidemiology, Swiss Tropical Institute, Basel, Switzerland; Molecular Parasitology Laboratory, Queensland Institute of Medical Research, Brisbane, Queensland, Australia; Centre Suisse de Recherches Scientifiques, Abidjan, Côte d’Ivoire; UFR Biosciences, Université d’Abidjan-Cocody, Abidjan, Côte d’Ivoire; Institute of Meteorology, Climatology and Remote Sensing, Department of Environmental Sciences, University of Basel, Basel, Switzerland

An important epidemiologic feature of schistosomiasis is the focal distribution of the disease. Thus, the identification of high-risk communities is an essential first step for targeting interventions in an efficient and cost-effective manner. We used a remotely-sensed digital elevation model (DEM), derived hydrologic features (i.e., stream order, and catchment area), and fitted Bayesian geostatistical models to assess associations between environmental factors and infection with Schistosoma mansoni among more than 4,000 school children from the region of Man in western Côte d’Ivoire. At the unit of the school, we found significant correlations between the infection prevalence of S. mansoni and stream order of the nearest river, water catchment area, and altitude. In conclusion, the use of a freely available 90 m high-resolution DEM, geographic information system applications, and Bayesian spatial modeling facilitates risk prediction for S. mansoni, and is a powerful approach for risk profiling of other neglected tropical diseases that are pervasive in the developing world.

Author Notes

Reprint requests: Jürg Utzinger, Department of Public Health and Epidemiology, Swiss Tropical Institute, P.O. Box, CH–4002 Basel, Switzerland, Telephone: 41-61-284-8129, Fax: 41-61-284-8105, E-mail: juerg.utzinger@unibas.ch.
Save