EFFECT OF INFECTION BY PLASMODIUM FALCIPARUM ON THE MELANIZATION IMMUNE RESPONSE OF ANOPHELES GAMBIAE

LOUIS LAMBRECHTS Laboratoire de Parasitologie Evolutive, Centre National de la Recherche Scientifique-Université Pierre et Marie Curie, Paris, France; Centre de Production et d’Infection des Anophèles, Institut Pasteur, Paris, France; Laboratoire de Recherche sur le Paludisme, Institut de Recherche pour le Développement-Organisation de Coordination pour la Lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroon; Unité de Caractérisation et Contrôle des Populations de Vecteurs, Institut de Recherche pour le Développement, Montpellier, France; Unité de Biologie et Génétique du Paludisme, Institut Pasteur, Paris, France

Search for other papers by LOUIS LAMBRECHTS in
Current site
Google Scholar
PubMed
Close
,
ISABELLE MORLAIS Laboratoire de Parasitologie Evolutive, Centre National de la Recherche Scientifique-Université Pierre et Marie Curie, Paris, France; Centre de Production et d’Infection des Anophèles, Institut Pasteur, Paris, France; Laboratoire de Recherche sur le Paludisme, Institut de Recherche pour le Développement-Organisation de Coordination pour la Lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroon; Unité de Caractérisation et Contrôle des Populations de Vecteurs, Institut de Recherche pour le Développement, Montpellier, France; Unité de Biologie et Génétique du Paludisme, Institut Pasteur, Paris, France

Search for other papers by ISABELLE MORLAIS in
Current site
Google Scholar
PubMed
Close
,
PARFAIT H. AWONO-AMBENE Laboratoire de Parasitologie Evolutive, Centre National de la Recherche Scientifique-Université Pierre et Marie Curie, Paris, France; Centre de Production et d’Infection des Anophèles, Institut Pasteur, Paris, France; Laboratoire de Recherche sur le Paludisme, Institut de Recherche pour le Développement-Organisation de Coordination pour la Lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroon; Unité de Caractérisation et Contrôle des Populations de Vecteurs, Institut de Recherche pour le Développement, Montpellier, France; Unité de Biologie et Génétique du Paludisme, Institut Pasteur, Paris, France

Search for other papers by PARFAIT H. AWONO-AMBENE in
Current site
Google Scholar
PubMed
Close
,
ANNA COHUET Laboratoire de Parasitologie Evolutive, Centre National de la Recherche Scientifique-Université Pierre et Marie Curie, Paris, France; Centre de Production et d’Infection des Anophèles, Institut Pasteur, Paris, France; Laboratoire de Recherche sur le Paludisme, Institut de Recherche pour le Développement-Organisation de Coordination pour la Lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroon; Unité de Caractérisation et Contrôle des Populations de Vecteurs, Institut de Recherche pour le Développement, Montpellier, France; Unité de Biologie et Génétique du Paludisme, Institut Pasteur, Paris, France

Search for other papers by ANNA COHUET in
Current site
Google Scholar
PubMed
Close
,
FRÉDÉRIC SIMARD Laboratoire de Parasitologie Evolutive, Centre National de la Recherche Scientifique-Université Pierre et Marie Curie, Paris, France; Centre de Production et d’Infection des Anophèles, Institut Pasteur, Paris, France; Laboratoire de Recherche sur le Paludisme, Institut de Recherche pour le Développement-Organisation de Coordination pour la Lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroon; Unité de Caractérisation et Contrôle des Populations de Vecteurs, Institut de Recherche pour le Développement, Montpellier, France; Unité de Biologie et Génétique du Paludisme, Institut Pasteur, Paris, France

Search for other papers by FRÉDÉRIC SIMARD in
Current site
Google Scholar
PubMed
Close
,
JEAN-CLAUDE JACQUES Laboratoire de Parasitologie Evolutive, Centre National de la Recherche Scientifique-Université Pierre et Marie Curie, Paris, France; Centre de Production et d’Infection des Anophèles, Institut Pasteur, Paris, France; Laboratoire de Recherche sur le Paludisme, Institut de Recherche pour le Développement-Organisation de Coordination pour la Lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroon; Unité de Caractérisation et Contrôle des Populations de Vecteurs, Institut de Recherche pour le Développement, Montpellier, France; Unité de Biologie et Génétique du Paludisme, Institut Pasteur, Paris, France

Search for other papers by JEAN-CLAUDE JACQUES in
Current site
Google Scholar
PubMed
Close
,
CATHERINE BOURGOUIN Laboratoire de Parasitologie Evolutive, Centre National de la Recherche Scientifique-Université Pierre et Marie Curie, Paris, France; Centre de Production et d’Infection des Anophèles, Institut Pasteur, Paris, France; Laboratoire de Recherche sur le Paludisme, Institut de Recherche pour le Développement-Organisation de Coordination pour la Lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroon; Unité de Caractérisation et Contrôle des Populations de Vecteurs, Institut de Recherche pour le Développement, Montpellier, France; Unité de Biologie et Génétique du Paludisme, Institut Pasteur, Paris, France

Search for other papers by CATHERINE BOURGOUIN in
Current site
Google Scholar
PubMed
Close
, and
JACOB C. KOELLA Laboratoire de Parasitologie Evolutive, Centre National de la Recherche Scientifique-Université Pierre et Marie Curie, Paris, France; Centre de Production et d’Infection des Anophèles, Institut Pasteur, Paris, France; Laboratoire de Recherche sur le Paludisme, Institut de Recherche pour le Développement-Organisation de Coordination pour la Lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroon; Unité de Caractérisation et Contrôle des Populations de Vecteurs, Institut de Recherche pour le Développement, Montpellier, France; Unité de Biologie et Génétique du Paludisme, Institut Pasteur, Paris, France

Search for other papers by JACOB C. KOELLA in
Current site
Google Scholar
PubMed
Close
Restricted access

Melanization is an immune response of mosquitoes that could potentially limit Plasmodium development. That mosquitoes rarely melanize Plasmodium falciparum in natural populations might result from immuno-suppression by the parasite, as has been observed in Aedes aegypti mosquitoes infected by Plasmodium gallinaceum. We tested this possibility in Anopheles gambiae mosquitoes infected by P. falciparum by comparing the ability to melanize a Sephadex bead of infected mosquitoes, of mosquitoes that had fed on infectious blood without becoming infected, and of control mosquitoes fed on uninfected blood. Rather than being immuno-suppressed, infected mosquitoes tended to have a stronger melanization response than mosquitoes in which the infection failed and than control mosquitoes, possibly because of immune activation after previous exposure to invading parasites. This finding suggests that P. falciparum relies on immune evasion rather than immuno-suppression to avoid being melanized and confirms that natural malaria transmission systems differ from laboratory models of mosquito–Plasmodium interactions.

Author Notes

Reprints requests: Louis Lambrechts, Department of Entomology, University of California, One Shields Ave., Davis, CA 95616. E-mail: llambrechts@ucdavis.edu.
  • 1

    Christophides GK, 2005. Transgenic mosquitoes and malaria transmission. Cell Microbiol 7 :325–333.

  • 2

    Richman A, Kafatos FC, 1996. Immunity to eukaryotic parasites in vector insects. Curr Opin Immunol 8 :14–19.

  • 3

    Tahar R, Boudin C, Thiéry I, Bourgouin C, 2002. Immune response of Anopheles gambiae to the early sporogonic stages of the human malaria parasite Plasmodium falciparum. EMBO J 21 :6673–6680.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4

    Michel K, Kafatos FC, 2005. Mosquito immunity against Plasmodium. Insect Biochem Mol Biol 35 :677–689.

  • 5

    Gouagna LC, Mulder B, Noubissi E, Tchuinkam T, Verhave JP, Boudin C, 1998. The early sporogonic cycle of Plasmodium falciparum in laboratory-infected Anopheles gambiae: An estimation of parasite efficacy. Trop Med Int Health 3 :21–28.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6

    Vaughan JA, Noden BH, Beier JC, 1992. Population dynamics of Plasmodium falciparum sporogony in laboratory-infected Anopheles gambiae. J Parasitol 78 :716–724.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7

    Christensen BM, Li J, Chen CC, Nappi AJ, 2005. Melanization immune responses in mosquito vectors. Trends Parasitol 21 :192–199.

  • 8

    Collins FH, Sakai RK, Vernick KD, Paskewitz S, Seeley DC, Miller LH, Collins WE, Campbell CC, Gwadz RW, 1986. Genetic selection of a Plasmodium-refractory strain of the malaria vector Anopheles gambiae. Science 234 :607–610.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9

    Paskewitz SM, Brown MR, Lea AO, Collins FH, 1988. Ultra-structure of the encapsulation of Plasmodium cynomolgi (B strain) on the midgut of a refractory strain of Anopheles gambiae. J Parasitol 74 :432–439.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10

    Osta MA, Christophides GK, Kafatos FC, 2004. Effects of mosquito genes on Plasmodium development. Science 303 :2030–2032.

  • 11

    Michel K, Budd A, Pinto S, Gibson TJ, Kafatos FC, 2005. Anopheles gambiae SRPN2 facilitates midgut invasion by the malaria parasite Plasmodium berghei. EMBO Rep 6 :891–897.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12

    Volz J, Osta MA, Kafatos FC, Muller HM, 2005. The roles of two clip domain serine proteases in innate immune responses of the malaria vector Anopheles gambiae. J Biol Chem 280 :40161–40168.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13

    Abraham EG, Pinto SB, Ghosh A, Vanlandingham DL, Budd A, Higgs S, Kafatos FC, Jacobs-Lorena M, Michel K, 2005. An immune-responsive serpin, SRPN6, mediates mosquito defense against malaria parasites. Proc Natl Acad Sci USA 102 :16327–16332.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14

    Schwartz A, Koella JC, 2002. Melanization of Plasmodium falciparum and C-25 sephadex beads by field-caught Anopheles gambiae (Diptera: Culicidae) from southern Tanzania. J Med Entomol 39 :84–88.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15

    Adini A, Warburg A, 1999. Interaction of Plasmodium gallinaceum ookinetes and oocysts with extracellular matrix proteins. Parasitology 119 :331–336.

  • 16

    Li X, Webb BA, 1994. Apparent functional role for a cysteine-rich polydnavirus protein in suppression of the insect cellular immune response. J Virol 68 :7482–7489.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17

    Rosqvist R, Forsberg A, Rimpilainen M, Bergman T, Wolf-Watz H, 1990. The cytotoxic protein YopE of Yersinia obstructs the primary host defence. Mol Microbiol 4 :657–667.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    Rosqvist R, Forsberg A, Wolf-Watz H, 1991. Intracellular targeting of the Yersinia YopE cytotoxin in mammalian cells induces actin microfilament disruption. Infect Immun 59 :4562–4569.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19

    Bouarab K, Melton R, Peart J, Baulcombe D, Osbourn A, 2002. A saponin-detoxifying enzyme mediates suppression of plant defences. Nature 418 :889–892.

  • 20

    Lindmark H, Johansson KC, Stoven S, Hultmark D, Engstrom Y, Soderhall K, 2001. Enteric bacteria counteract lipopolysaccharide induction of antimicrobial peptide genes. J Immunol 167 :6920–6923.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21

    Boëte C, Paul RE, Koella JC, 2002. Reduced efficacy of the immune melanization response in mosquitoes infected by malaria parasites. Parasitology 125 :93–98.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22

    Boëte C, Paul RE, Koella JC, 2004. Direct and indirect immunosuppression by a malaria parasite in its mosquito vector. Proc R Soc Lond B Biol Sci 271 :1611–1615.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23

    Boëte C, 2005. Malaria parasites in mosquitoes: Laboratory models, evolutionary temptation and the real world. Trends Parasitol 21 :445–447.

  • 24

    Paskewitz S, Riehle MA, 1994. Response of Plasmodium refractory and susceptible strains of Anopheles gambiae to inoculated Sephadex beads. Dev Comp Immunol 18 :369–375.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25

    Lensen AH, Van Gemert GJ, Bolmer MG, Meis JF, Kaslow D, Meuwissen JH, Ponnudurai T, 1992. Transmission blocking antibody of the Plasmodium falciparum zygote/ookinete surface protein Pfs25 also influences sporozoite development. Parasite Immunol 14 :471–479.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    Vermeulen AN, van Deursen J, Brakenhoff RH, Lensen TH, Ponnudurai T, Meuwissen JH, 1986. Characterization of Plasmodium falciparum sexual stage antigens and their biosynthesis in synchronised gametocyte cultures. Mol Biochem Parasitol 20 :155–163.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27

    Tchuinkam T, Mulder B, Dechering K, Stoffels H, Verhave JP, Cot M, Carnevale P, Meuwissen JH, Robert V, 1993. Experimental infections of Anopheles gambiae with Plasmodium falciparum of naturally infected gametocyte carriers in Cameroon: Factors influencing the infectivity to mosquitoes. Trop Med Parasitol 44 :271–276.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28

    Koella JC, Lyimo EO, 1996. Variability in the relationship between weight and wing length of Anopheles gambiae (Diptera: Culicidae). J Med Entomol 33 :261–264.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29

    Rigaud T, Moret Y, 2003. Differential phenoloxidase activity between native and invasive gammarids infected by local acan-thocephalans: Differential immunosuppression? Parasitology 127 :571–577.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30

    Koella JC, Boëte C, 2003. A model for the coevolution of immunity and immune evasion in vector-borne diseases with implications for the epidemiology of malaria. Am Nat 161 :698–707.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31

    Cotter SC, Kruuk LE, Wilson K, 2004. Costs of resistance: Genetic correlations and potential trade-offs in an insect immune system. J Evol Biol 17 :421–429.

  • 32

    Riehle MM, Markianos K, Niare O, Xu J, Li J, Toure AM, Podiougou B, Oduol F, Diawara S, Diallo M, Coulibaly B, Ouatara A, Kruglyak L, Traore SF, Vernick KD, 2006. Natural malaria infection in Anopheles gambiae is regulated by a single genomic control region. Science 312 :577–579.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33

    Lambrechts L, Vulule JM, Koella JC, 2004. Genetic correlation between melanization and antibacterial immune responses in a natural population of the malaria vector Anopheles gambiae. Evolution Int J Org Evolution 58 :2377–2381.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34

    Baton LA, Ranford-Cartwright LC, 2005. How do malaria ookinetes cross the mosquito midgut wall? Trends Parasitol 21 :22–28.

  • 35

    Moret Y, Siva-Jothy MT, 2003. Adaptive innate immunity? Responsive-mode prophylaxis in the mealworm beetle, Tenebrio molitor. Proc Biol Sci 270 :2475–2480.

  • 36

    Luckhart S, Vodovotz Y, Cui L, Rosenberg R, 1998. The mosquito Anopheles stephensi limits malaria parasite development with inducible synthesis of nitric oxide. Proc Natl Acad Sci USA 95 :5700–5705.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37

    Zambrano-Villa S, Rosales-Borjas D, Carrero JC, Ortiz-Ortiz L, 2002. How protozoan parasites evade the immune response. Trends Parasitol 18 :272–278.

  • 38

    Warr E, Lambrechts L, Koella JC, Bourgouin C, Dimopoulos G, 2006. Anopheles gambiae immune responses to Sephadex beads: Involvement of anti-Plasmodium factors in regulating melanization. Insect Biochem Mol Biol 36 :769–778.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39

    Aguilar R, Dong Y, Warr E, Dimopoulos G, 2005. Anopheles infection responses; laboratory models versus field malaria transmission systems. Acta Trop 95 :285–291.

    • PubMed
    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 660 593 20
Full Text Views 298 10 0
PDF Downloads 72 9 0
 

 

 

 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save