• 1

    Maurer G, 1902. Die malaria perniciosa. Zentralbl Bakteriol Parasitenkunde 23 :695–719.

  • 2

    Trager W, Rudzinska MA, Bradbury PC, 1966. The fine structure of Plasmodium falciparum and its host erythrocyte in natural malarial infections in man. Bull World Health Organ 35 :883–885.

    • Search Google Scholar
    • Export Citation
  • 3

    Langreth SG, Jensen JB, Reese RT, Trager W, 1978. Fine structure of human malaria in vitro. J Protozool 25 :443–452.

  • 4

    Garnham PCC, 1966. Malaria Parasites and Oher Haemosporidia. Oxford: Blackwell Scientific Publications.

  • 5

    Lanzer M, Wickert H, Krohne G, Vincensini L, Braun Breton C, 2005. Maurer’ clefts: a novel multi-functional organelle in the cytoplasm of Plasmodium falciparum-infected erythrocytes. Int J Parasitol 2 :2.

    • Search Google Scholar
    • Export Citation
  • 6

    Aikawa M, Uni Y, Andrutis AT, Howard RJ, 1986. Membrane-associated electron-dense material of the asexual stages of Plasmodium falciparum: evidence for movement from the intracellular parasite to the erythrocyte membrane. Am J Trop Med Hyg 35 :30–36.

    • Search Google Scholar
    • Export Citation
  • 7

    Taraschi TF, Trelka DP, Martinez S, Schneider TG, O’Donnell ME, 2001. Vesicle-mediated trafficking of parasite proteins to the host cell cytosol and erythrocyte surface membrane in Plasmodium falciparum infected erythrocytes. Int J Parasitol 31 :1381–1391.

    • Search Google Scholar
    • Export Citation
  • 8

    Haeggström M, Kironde F, Berzins K, Chen Q, Wahlgren M, Fernandez V, 2004. Common trafficking pathway for variant antigens destined for the surface of the Plasmodium falciparum-infected erythrocyte. Mol Biochem Parasitol 133 :1–14.

    • Search Google Scholar
    • Export Citation
  • 9

    Blisnick T, Morales Betoulle ME, Barale J-C, Uzureau P, Berry L, Desroses S, Fujioka H, Mattei D, Braun Breton C, 2000. Pfsbp1, a Maurer’s cleft Plasmodium falciparum protein, is associated with the erythrocyte skeleton. Mol Biochem Parasitol 111 :107–121.

    • Search Google Scholar
    • Export Citation
  • 10

    Wickham ME, Rug M, Ralph SA, Klonis N, McFadden GI, Tilley L, Cowman AF, 2001. Trafficking and assembly of the cytoadherence complex in Plasmodium falciparum-infected human erythrocytes. EMBO J 20 :5636–5649.

    • Search Google Scholar
    • Export Citation
  • 11

    Przyborski JM, Wickert H, Krohne G, Lanzer M, 2003. Maurer’s clefts: a novel secretory organelle? Mol Biochem Parasitol 132 :17–26.

  • 12

    Hinterberg K, Scherf A, Gysin J, Toyoshima T, Aikawa M, Mazie J-C, Pereira da Silva L, Mattei D, 1994. Plasmodium falciparum: the Pf332 antigen is secreted from the parasite by a Brefeldin A-dependent pathway and is translocated to the erythrocyte membrane via the Maurer’s clefts. Exp Parasitol 79 :279–291.

    • Search Google Scholar
    • Export Citation
  • 13

    Knuepfer E, Rug M, Klonis N, Tilley L, Cowman AF, 2005. Trafficking of the major virulence factor to the surface of transfected P. falciparum-infected erythrocytes. Blood 105 :4078–4087.

    • Search Google Scholar
    • Export Citation
  • 14

    Winter G, Kawai S, Haeggstrom M, Kaneko O, von Euler A, Kawazu S, Palm D, Fernandez V, Wahlgren M, 2005. SURFIN is a polymorphic antigen expressed on Plasmodium falciparum merozoites and infected erythrocytes. J Exp Med 201 :1853–1863.

    • Search Google Scholar
    • Export Citation
  • 15

    Albano FR, Berman A, La Greca N, Hibbs AR, Wickham M, Foley M, Tilley L, 1999. A homologue of Sar1p localises to a novel trafficking pathway in malaria-infected erythrocyte. Eur J Cell Biol 78 :453–462.

    • Search Google Scholar
    • Export Citation
  • 16

    Adisa A, Albano FR, Reeder J, Foley M, Tilley L, 2001. Evidence for a role for a Plasmodium falciparum homologue of Sec31p in the export of proteins to the surface of malaria parasite-infected erythrocytes. J Cell Sci 114 :3377–3386.

    • Search Google Scholar
    • Export Citation
  • 17

    Waterkeyn JG, Wickham ME, Davern KM, Cooke BM, Coppel RL, Reeder JC, Culvenor JG, Waller RF, Cowman AF, 2000. Targeted mutagenesis of Plasmodium falciparum erythrocyte membrane protein 3 (PfEMP3) disrupts cytoadherence of malaria-infected red blood cells. EMBO J 19 :2813–2823.

    • Search Google Scholar
    • Export Citation
  • 18

    Fernandez V, Treutiger CJ, Nash GB, Wahlgren M, 1998. Multiple adhesive phenotypes linked to rosetting binding of erythrocytes in Plasmodium falciparum malaria. Infect Immun 66 :2969–2975.

    • Search Google Scholar
    • Export Citation
  • 19

    Trager W, Jensen JB, 1976. Human malaria parasites in continuous culture. Science 193 :673–675.

  • 20

    Ljungstöm I, Perlmann H, Schlichtherle M, Sherf A, Wahlgren M, 2004. Methods in malaria research. Fourth edition. Manassas, VA: American Type Culture Collection.

  • 21

    Lambros C, Vanderberg JP, 1979. Synchronization of Plasmodium falciparum erythrocytic stages in culture. J Parasitol 65 :418–420.

  • 22

    Wilson TM, 1907. On the chemistry and staining properties of certain derivates of the methylene blue group when combined with eosin. J Exp Med 9 :645–670.

    • Search Google Scholar
    • Export Citation
  • 23

    Lillie RD, 1978. Romanowsky-Malachowski stains the so-called Romanowsky stain: Malachowski’s 1891 use of alkali polychromed methylene blue for malaria plasmodia. Stain Technol 53 :23–28.

    • Search Google Scholar
    • Export Citation
  • 24

    Romanovsky Stain. [Cited October 9, 2006.] Available from http://encyclopedia.thefreedictionary.com/Romanowsky+stain.

  • 25

    Fernandez V, Hommel M, Chen Q, Hagblom P, Wahlgren M, 1999. Small, clonally variant antigens expressed on the surface of the Plasmodium falciparum-infected erythrocyte are encoded by the rif gene family and are the target of human immune responses. J Exp Med 190 :1393–1404.

    • Search Google Scholar
    • Export Citation
  • 26

    Chen Q, Barragan A, Fernandez V, Sundström A, Schichtherle M, Sahlén A, Carlson J, Datta S, Wahlgren M, 1998. Identification of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) as the rosetting ligand of the malaria parasite P. falciparum. J Exp Med 187 :15–23.

    • Search Google Scholar
    • Export Citation
  • 27

    Udomsangpetch R, Lundgren K, Berzins K, Wahlin B, Perlmann H, Troye-Blomberg M, Carlsson J, Wahlgren M, Perlmann P, Björkman A, 1986. Human monoclonal antibodies to Pf155, a major antigen of malaria parasite Plasmodium falciparum. Science 231 :57–59.

    • Search Google Scholar
    • Export Citation
  • 28

    Ahlborg N, Berzins K, Perlmann P, 1991. Definition of the epitope recognized by the human monoclonal antibody 33G2. Mol Biochem Parasitol 46 :89–96.

    • Search Google Scholar
    • Export Citation
  • 29

    Hope IA, Hall R, Simmons DL, Hyde JE, Scaife JG, 1984. Evidence for immunological cross-reaction between sporozoites and blood stages of a human malaria parasite. Nature 308 :191–194.

    • Search Google Scholar
    • Export Citation
  • 30

    Simmons D, Woollett G, Bergin-Cartwright M, Kay D, Scaife J, 1987. A malaria protein exported into a new compartment within the host erythrocyte. EMBO J 6 :485–491.

    • Search Google Scholar
    • Export Citation
  • 31

    Hall R, McBride J, Morgan G, Tait A, Zolg W, Walliker D, Scaife J, 1983. Antigens of the erythrocytic stages of the human malaria parasite Plasmodium falciparum detected by monoclonal antibodies. Mol Biochem Parasitol 7 :247–265.

    • Search Google Scholar
    • Export Citation
  • 32

    Rock EP, Marsh K, Saul AJ, Wellems TE, Taylor DW, Maloy WL, Howard RJ, 1987. Comparative analysis of the Plasmodium falciparum histidine-rich proteins HRP-I, HRP-II and HRP-III in malaria parasites of diverse origin. Parasitology 95 :209–227.

    • Search Google Scholar
    • Export Citation
  • 33

    Howard RJ, Uni S, Aikawa M, Aley SB, Leech JH, Lew AM, Wellems TE, Rener J, Taylor DW, 1986. Secretion of a malarial histidine-rich protein (PfHRPII) from Plasmodium falciparum-infected erythrocytes. J Cell Biol 103 :1269–1277.

    • Search Google Scholar
    • Export Citation
  • 34

    Hibbs AR, Saul AJ, 1994. Plasmodium falciparum: highly mobile small vesicles in the malaria-infected red blood cell cytoplasm. Exp Parasitol 79 :260–269.

    • Search Google Scholar
    • Export Citation
  • 35

    Mattei D, Scherf A, 1992. The Pf332 gene of Plasmodium falciparum codes for a giant protein that is translocated from the parasite to the membrane of infected erythrocytes. Gene 1 :71–79.

    • Search Google Scholar
    • Export Citation
  • 36

    Johnson D, Gunther K, Ansorge I, Bentin J, Kent A, Bannister L, Ridley R, Lingelbach K, 1994. Characterization of membrane proteins exported from Plasmodium falciparum into the host cell erythrocyte. Parasitology 109 :1–9.

    • Search Google Scholar
    • Export Citation
  • 37

    Aikawa M, 1971. Plasmodium: the fine structure of malarial parasites. Exp Parasitol 30 :284–320.

  • 38

    Blisnick T, Vincensini L, Barale JC, Namane A, Braun Breton C, 2005. LANCL1, an erythrocyte protein recruited to the Maurer’s clefts during Plasmodium falciparum development. Mol Biochem Parasitol 141 :39–47.

    • Search Google Scholar
    • Export Citation
  • 39

    Spycher C, Klonis N, Spielmann T, Kump E, Steiger S, Tilley L, Beck HP, 2003. MAHRP-1, a novel Plasmodium falciparum histidine-rich protein, binds ferriprotoporphyrin IX and localizes to the Maurer’s clefts. J Biol Chem 278 :35373–35383.

    • Search Google Scholar
    • Export Citation
  • 40

    Eksi S, Stump A, Fanning SL, Shenouda MI, Fujioka H, Williamson KC, 2002. Targeting and sequestration of truncated Pfs230 in an intraerythrocytic compartment during Plasmodium falciparum gametocytogenesis. Mol Microbiol 44 :1507–1516.

    • Search Google Scholar
    • Export Citation
  • 41

    McRobert L, Preiser P, Sharp S, Jarra W, Kaviratne M, Taylor MC, Renia L, Sutherland CJ, 2004. Distinct trafficking and localization of STEVOR proteins in three stages of the Plasmodium falciparum life cycle. Infect Immun 72 :6597–6602.

    • Search Google Scholar
    • Export Citation
  • 42

    Cooke BM, Buckingham DW, Glenister FK, Fernandez KM, Bannister LH, Marti M, Mohandas N, Coppel RL, 2006. A Maurer’s cleft-associated protein is essential for expression of the major malaria virulence antigen on the surface of infected red blood cells. J Cell Biol 172 :899–908.

    • Search Google Scholar
    • Export Citation
  • 43

    Elmendorf HG, Haldar K, 1994. Plasmodium falciparum exports the Golgi marker sphingomyelin synthase into a tubovesicular network in the cytoplasm of mature erythrocytes. J Cell Biol 124 :449–462.

    • Search Google Scholar
    • Export Citation
  • 44

    Wickert H, Wissing F, Andrews KT, Stich A, Krohne G, Lanzer M, 2003. Evidence for trafficking of PfEMP1 to the surface of P. falciparum-infected erythrocytes via a complex membrane network. Eur J Cell Biol 82 :271–284.

    • Search Google Scholar
    • Export Citation

 

 

 

 

OF MAURER’S CLEFTS IN PLASMODIUM FALCIPARUM–INFECTED ERYTHROCYTES

View More View Less
  • 1 Department of Microbiology, Tumor- and Cellbiology, Karolinska Institutet, Stockholm, Sweden; Department of Biochemistry, University of Makerere, Kampala, Uganda; Department of Parasitology, Mycology and Environmental Microbiology, Swedish Institute for Infectious Disease Control, Solna, Sweden

In 1902 Georg Maurer was the first to publish a detailed description of Giemsa-stained structures in the cytosol of Plasmodium falciparum–infected erythrocytes, today known as Maurer’s clefts. Later when clefts were seen by electron microscopy, the description was modified to also include these, which has caused disagreement over the composition of Maurer’s clefts. For that reason, Maurer’s clefts were characterized during intraerythrocytic development of P. falciparum by simultaneously staining cytosolic structures with antibodies using indirect immunofluorescence assays and with Giemsa. At least three groups of antigens, P. falciparum erythrocyte membrane protein 1 (PfEMP1)/ RIFIN/SURFIN, P. falciparum histidine-rich protein 2 (PfHRP2), and exported proteins 1 and 2 (Exp1 and Exp2), were detected in distinct Giemsa-stained structures in the cytosol of infected erythrocytes, but PfHRP2 and Exp1/Exp2 were not found in clefts by transmission electron microscopy. Therefore, Maurer’s clefts as defined by staining with Giemsa comprise a number of cytoplasmic structures and antigens not included in structures called clefts and seen by electron microscopy.

Save