• 1

    Coluzzi M, Sabatini A, Della Torre A, Di Deco MA, Petrarca V, 2002. A polytene chromosome analysis of the Anopheles gambiae species complex. Science 298 :1415–1418.

    • Search Google Scholar
    • Export Citation
  • 2

    Rieseberg LH, 2001. Chromosomal rearrangements and speciation. Trends Ecol Evol 16 :351–358.

  • 3

    Ortiz-Barrientos D, Reiland J, Hey J, Noor MA, 2002. Recombination and the divergence of hybridizing species. Genetica 116 :167–178.

  • 4

    Ayala FJ, Coluzzi M, 2005. Chromosome speciation: humans, Drosophila, and mosquitoes. Proc Natl Acad Sci USA 102 (Suppl 1):6535–6542.

  • 5

    WHO, 2003. World Health Report 2003. Geneva: World Health Organization, 210 pp.

  • 6

    Della Torre A, Tu Z, Petrarca V, 2005. On the distribution and genetic differentiation of Anopheles gambiae s.s. molecular forms. Insect Biochem Mol Biol 35 :755–769.

    • Search Google Scholar
    • Export Citation
  • 7

    Rieseberg LH, Whitton J, Gardner K, 1999. Hybrid zones and the genetic architecture of a barrier to gene flow between two sunflower species. Genetics 152 :713–727.

    • Search Google Scholar
    • Export Citation
  • 8

    Noor MA, Grams KL, Bertucci LA, Reiland J, 2001. Chromosomal inversions and the reproductive isolation of species. Proc Natl Acad Sci USA 98 :12084–12088.

    • Search Google Scholar
    • Export Citation
  • 9

    Feder JL, Roethele JB, Filchak K, Niedbalski J, Romero-Severson J, 2003. Evidence for inversion polymorphism related to sympatric host race formation in the apple maggot fly, Rhagoletis pomonella.Genetics 163 :939–953.

    • Search Google Scholar
    • Export Citation
  • 10

    Butlin RK, 2005. Recombination and speciation. Mol Ecol 14 :2621–2635.

  • 11

    Turner TL, Hahn MW, Nuzhdin SV, 2005. Genomic islands of speciation in Anopheles gambiae.PLoS Biol 3 :e285.

  • 12

    Stump AD, Fitzpatrick MC, Lobo NF, Traore S, Sagnon N, Costantini C, Collins FH, Besansky NJ, 2005. Centromere-proximal differentiation and speciation in Anopheles gambiae.Proc Natl Acad Sci USA 102 :15930–15935.

    • Search Google Scholar
    • Export Citation
  • 13

    Zheng L, Benedict MQ, Cornel AJ, Collins FH, Kafatos FC, 1996. An integrated genetic map of the African human malaria vector mosquito, Anopheles gambiae.Genetics 143 :941–952.

    • Search Google Scholar
    • Export Citation
  • 14

    Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR, Wincker P, Clark AG, Ribeiro JM, Wides R, Salzberg SL, Loftus B, Yandell M, Majoros WH, Rusch DB, Lai Z, Kraft CL, Abril JF, Anthouard V, Arensburger P, Atkinson PW, Baden H, de Berardinis V, Baldwin D, Benes V, Biedler J, Blass C, Bolanos R, Boscus D, Barnstead M, Cai S, Center A, Chatuverdi K, Christophides GK, Chrystal MA, Clamp M, Cravchik A, Curwen V, Dana A, Delcher A, Dew I, Evans CA, Flanigan M, Grundschober-Freimoser A, Friedli L, Gu Z, Guan P, Guigo R, Hillenmeyer ME, Hladun SL, Hogan JR, Hong YS, Hoover J, Jaillon O, Ke Z, Kodira C, Kokoza E, Koutsos A, Letunic I, Levitsky A, Liang Y, Lin JJ, Lobo NF, Lopez JR, Malek JA, McIntosh TC, Meister S, Miller J, Mobarry C, Mongin E, Murphy SD, O’Brochta DA, Pfannkoch C, Qi R, Regier MA, Remington K, Shao H, Sharakhova MV, Sitter CD, Shetty J, Smith TJ, Strong R, Sun J, Thomasova D, Ton LQ, Topalis P, Tu Z, Unger MF, Walenz B, Wang A, Wang J, Wang M, Wang X, Woodford KJ, Wortman JR, Wu M, Yao A, Zdobnov EM, Zhang H, Zhao Q, Zhao S, Zhu SC, Zhimulev I, Coluzzi M, della Torre A, Roth CW, Louis C, Kalush F, Mural RJ, Myers EW, Adams MD, Smith HO, Broder S, Gardner MJ, Fraser CM, Birney E, Bork P, Brey PT, Venter JC, Weissenbach J, Kafatos FC, Collins FH, Hoffman SL. 2002. The genome sequence of the malaria mosquito Anopheles gambiae.Science 298 :129–149.

    • Search Google Scholar
    • Export Citation
  • 15

    Stump AD, Shoener JA, Costantini C, Sagnon N, Besansky NJ, 2005. Sex-linked differentiation between incipient species of Anopheles gambiae.Genetics 169 :1509–1519.

    • Search Google Scholar
    • Export Citation
  • 16

    Van Ooijen JW, Voorrips RE, 2001. JoinMap® 3.0, Software for the Calculation of Genetic Linkage Maps. Wageningen, The Netherlands: Plant Research International.

  • 17

    Benedict MQ, Rafferty CS, 2002. Unassisted isolated-pair mating of Anopheles gambiae (Diptera: Culicidae) mosquitoes. J Med Entomol 39 :942–944.

    • Search Google Scholar
    • Export Citation
  • 18

    Baker RH, French WL, Kitzmiller JB, 1962. Induced copulation in Anopheles mosquitoes. Mosquito News 22 :16–17.

  • 19

    Nachman MW, 2002. Variation in recombination rate across the genome: evidence and implications. Curr Opin Genet Dev 12 :657–663.

  • 20

    Mahtani MM, Willard HF, 1998. Physical and genetic mapping of the human X chromosome centromere: repression of recombination. Genome Res 8 :100–110.

    • Search Google Scholar
    • Export Citation
  • 21

    Kong A, Gudbjartsson DF, Sainz J, Jonsdottir GM, Gudjonsson SA, Richardsson B, Sigurdardottir S, Barnard J, Hallbeck B, Masson G, Shlien A, Palsson ST, Frigge ML, Thorgeirsson TE, Gulcher JR, Stefansson K, 2002. A high-resolution recombination map of the human genome. Nat Genet 31 :241–247.

    • Search Google Scholar
    • Export Citation
  • 22

    Wu CI, Ting CT, 2004. Genes and speciation. Nat Rev Genet 5 :114–122.

  • 23

    Machado CA, Kliman RM, Markert JA, Hey J, 2002. Inferring the history of speciation from multilocus DNA sequence data: the case of Drosophila pseudoobscura and close relatives. Mol Biol Evol 19 :472–488.

    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 227 120 5
PDF Downloads 73 32 1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

VARIATION IN RECOMBINATION RATE ACROSS THE X CHROMOSOME OF ANOPHELES GAMBIAE

View More View Less
  • 1 Dipartimento di Scienze di Sanità Pubblica, Università Degli Studi di Roma “La Sapienza,” Rome, Italy; Center for Global Health and Infectious Diseases, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana
Restricted access

The M and S molecular forms of Anopheles gambiae are considered to be incipient species, despite residual gene exchange. Of the three small genome regions that are strongly differentiated between the molecular forms (“speciation islands”), two are located near centromeres, on the left arm of chromosome 2 and the X chromosome. To test the prediction of reduced recombination in these islands, we estimated recombination rates between microsatellite loci on the X chromosome using two M-form strains. Across most of the chromosome, recombination occurred at ~1 centimorgan per megabase (cM Mb−1), a value closely matching the genome-wide average estimated for A. gambiae and for other eukaryotes. Recombination was much higher at the telomeric end, > 7 cM Mb−1. In the speciation island at the centromeric end, recombination was sharply reduced to ~0.2 cM Mb−1, consistent with a role for reduced recombination in maintaining differentiation between nascent species despite gene flow.

Save