A SIMPLE FLUOROGENIC METHOD TO DETECT VIBRIO CHOLERAE AND AEROMONAS HYDROPHILA IN WELL WATER FOR AREAS IMPACTED BY CATASTROPHIC DISASTERS

GARY P. RICHARDS United States Department of Agriculture, Agricultural Research Service, Microbial Food Safety Research Unit, Delaware State University, Dover, Delaware

Search for other papers by GARY P. RICHARDS in
Current site
Google Scholar
PubMed
Close
and
MICHAEL A. WATSON United States Department of Agriculture, Agricultural Research Service, Microbial Food Safety Research Unit, Delaware State University, Dover, Delaware

Search for other papers by MICHAEL A. WATSON in
Current site
Google Scholar
PubMed
Close
Restricted access

The colony overlay procedure for peptidases (COPP) is a simple, fluorogenic assay that can rapidly detect and quantify Vibrio cholerae and Aeromonas hydrophila in well water. Cleavage of the substrate L-lysyl-7-amino-4-trifluoromethylcoumarin by enzymes present in Vibrio and Aeromonas species produces fluorescent foci on cellulose acetate membranes exposed to long-wave ultraviolet light. Vibrio cholerae O1, O139, O155, and A. hydrophila were readily detected using this procedure, whereas Enterobacteriaceae and other non-Vibrionaceae pathogens did not produce fluorescence. The assay is practical for assessing the relative safety of well water in areas that have experienced catastrophic devastation from natural disasters, acts of war, or civil strife and may help curb outbreaks of cholera and other enteric illnesses in affected areas. In tropical climates, the procedure may be adapted for use in areas without electricity.

Author Notes

Reprint requests: Gary P. Richards, USDA, ARS, Delaware State University, James W.W. Baker Center, Dover, DE 19901, E-mail: grichards@errc.ars.usda.gov.
  • 1

    Ramakrihna BS, Kang G, Rajan DP, Mathan M, Mathan VI, 1996. Isolation of Vibrio cholerae O139 from drinking water supply during an epidemic of cholera. Health 1 :854–858.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2

    Ries AA, Vugia DJ, Beingolea L, Papacios AM, Vasquez E, Wells JG, Garcia Basa N, Swerdlow DL, Pollack M, Bean NH, 1992. Cholera in Piura, Peru: a modern urban epidemic. J Infect Dis 166 :1429–1433.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3

    Swerdlow DL, Mintz ED, Rodriguez M, Tejada E, Ocampo C, Espejo L, Greene KD, Saldana W, Seminario L, Tauxe RV, 1992. Waterborne transmission of epidemic cholerae in Trujillo, Peru: lessons for a continent at risk. Lancet 340 :28–33.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4

    Taneja N, Kaur J, Sharma K, Singh M, Kalra JK, Sharma NM, Sharma M, 2003. A recent outbreak of cholera due to Vibrio cholerae O1 Ogawa in & around Chindigarh, North India. Indian J Med Res 117 :243–246.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5

    Tauxe RV, Holmberg SD, Dodin A, Wells JV, Blake PA, 1988. Epidemic cholera in Mali: high mortality and multiple routes of transmission in a famine area. Epidemiol Infect 100 :279–289.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6

    Kaper JB, Morris JG, Levine MM, 1995. Cholera. Clin Microbiol Rev 8 :48–86.

  • 7

    Reeves PR, Lan R, 1998. Cholera in the 1990s. Br Med Bull 54 :611–623.

  • 8

    Sack DA, Sack RB, Nair GB, Siddique AK, 2004. Cholera. Lancet 363 :223–233.

  • 9

    Hoge CW, Bodhidatta L, Echeverria P, Deesuwan M, Kitporka P, 1996. Epidemiologic study of Vibrio cholerae O1 and O139 in Thailand: at the advancing edge of the eighth pandemic. Am J Epidemiol 143 :263–268.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10

    Anonymous, 2003. Cholera epidemic after increased civil conflict—Monrovia, Liberia, June–September 2003. Morb Mortal Wkly Rep 52 :1093–1095.

  • 11

    Richards GP, Hammer CH, Garfield MK, Parveen S, 2004. Characterization of a lysyl aminopeptidase activity associated with phosphoglucose isomerase of Vibrio vulnificus. Biochim Biophys Acta 1700 :219–229.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12

    Richards GP, Parveen S, 2005. A survey for phosphoglucose isomerase with lysyl aminopeptidase activity in Vibrionaceae and non-Vibrio pathogens. Biochim Biophys Acta 1748 :128–133.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13

    Richards GP, 2004. Structural and functional analyses of phosphoglucose isomerase from Vibrio vulnificus and its lysyl aminopeptidase activity. Biochim Biophys Acta 1702 :89–102.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14

    Richards GP, Watson MA, Parveen S, 2005. Development of a simple and rapid fluorogenic procedure for the identification of Vibrionaceae family members. Appl Environ Microbiol 71 :3524–3527.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15

    Kueh CS, Grohmann GS, 1989. Recovery of viruses and bacteria in waters off Bondi beach: a pilot study. Med J Aust 151 :632–638.

  • 16

    Picard B, Arlet G, Goullet P, 1984. Aeromonas hydrophila septicemia. Epidemiologic aspects. 15 cases. Presse Med 13 :1203–1205.

  • 17

    Wadstrom T, Ljungh A, 1991. Aeromonas and Plesiomonas as food- and waterborne pathogens. Int J Food Microbiol 12 :303–311.

  • 18

    El-Taweel GE, Shaban AM, 2001. Microbiological quality of drinking water at eight water treatment plants. Int J Environ Health Res 11 :285–290.

  • 19

    Reiff F, Roses M, Venczel L, Quick R, Will V, 1996. Low cost safe water for the world: a practical interim solution. Health Policy (New York) 17 :389–408.

  • 20

    Quick R, Venczel L, Gonzalez O, Mintz E, Highsmith A, Espada A, Damiani E, Bean N, De Hannover R, Tauxe R, 1996. Narrow-mouthed water storage vessels and in situ chlorination in a Bolivian community: a simple method to improve drinking water quality. Am J Trop Med Hyg 54 :511–516.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21

    Sack DA, Tacket CO, Cohen MB, Sack RB, Losonsky GA, Shimko J, Nataro JP, Edelman R, Levine MM, Giannella RA, Schiff G, Lang D, 1998. Validation of a volunteer model of cholera with frozen bacteria as the challenge. Infect Immun 66 :1968–1972.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22

    Pfeffer C, Oliver JD, 2003. A comparison of thiosulphate-citrate-bile-salts-sucrose (TCBS) agar and thiosulphate-chloride-iodide (TCI) agar for the isolation of Vibrio species from estuarine environments. Lett Appl Microbiol 36 :150–151.

    • PubMed
    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 250 209 5
Full Text Views 330 11 4
PDF Downloads 98 10 4
 

 

 

 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save