POLYMORPHISMS IN PFCRT, PFMDR1, DHFR GENES AND IN VITRO RESPONSES TO ANTIMALARIALS IN PLASMODIUM FALCIPARUM ISOLATES FROM BANGUI, CENTRAL AFRICAN REPUBLIC

DIDIER MENARD Pasteur Institute of Bangui, Bangui, Central African Republic

Search for other papers by DIDIER MENARD in
Current site
Google Scholar
PubMed
Close
,
FERDINAND YAPOU Pasteur Institute of Bangui, Bangui, Central African Republic

Search for other papers by FERDINAND YAPOU in
Current site
Google Scholar
PubMed
Close
,
ALEXANDRE MANIRAKIZA Pasteur Institute of Bangui, Bangui, Central African Republic

Search for other papers by ALEXANDRE MANIRAKIZA in
Current site
Google Scholar
PubMed
Close
,
DJIBRINE DJALLE Pasteur Institute of Bangui, Bangui, Central African Republic

Search for other papers by DJIBRINE DJALLE in
Current site
Google Scholar
PubMed
Close
,
MARCELLE DIANE MATSIKA-CLAQUIN Pasteur Institute of Bangui, Bangui, Central African Republic

Search for other papers by MARCELLE DIANE MATSIKA-CLAQUIN in
Current site
Google Scholar
PubMed
Close
, and
ANTOINE TALARMIN Pasteur Institute of Bangui, Bangui, Central African Republic

Search for other papers by ANTOINE TALARMIN in
Current site
Google Scholar
PubMed
Close
Restricted access

Drug resistance is probably the greatest challenge to most malaria-control programs. Given the limited resources for other malarial-control measures, rational drug used is crucial. Molecular markers for parasite resistance such as pfcrt, pfmdr-1, and dhfr have the potential to be used in an integrated fashion to provide timely information that is useful to policy makers. Therefore, we evaluated polymorphisms in these genes from Plasmodium falciparum and their association with in vitro antimalarial drug resistance to 135 parasites samples collected in Bangui in 2004. For the dhfr gene, we found a strong association between the dhfr genotype and chemosensitivity to pyrimethamine. For the pfcrt gene, we found that haplotypes with mutant-type alleles led to significant changes in the IC50 values for chloroquine, monodesethylamodiaquine, and quinine. We found no correlations for the pfmdr1 gene. These findings suggest that a regular monitoring and screening for resistance markers for antifolates and for chloroquine could act as an adjunct to in vivo trials.

Author Notes

  • 1

    Barat LM, Bloland PB, 1997. Drug resistance among malaria and other parasites. Infect Dis Clin North Am 11 :969–987.

  • 2

    Marsh K, 1998. Malaria disaster in Africa. Lancet 352 :924.

  • 3

    WHO, 2003. Assessment and monitoring of antimalarial drug efficacy for the treatment of uncomplicated falciparum malaria. Geneva, Switzerland. (WHO/HTM/RBM/2003.50). Available online: http://mosquito.who.int/cmc_upload/0/000/017/017/ProtocolWHO.pdf.

    • PubMed
    • Export Citation
  • 4

    Bickii J, Basco LK, Ringwald P, 1998. Assessment of three in vitro tests and an in vivo test for chloroquine resistance in Plasmodium falciparum clinical isolates. J Clin Microbiol 36 :243–247.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5

    Warhurst DC, 2001. A molecular marker for chloroquine-resistant falciparum malaria. N Engl J Med 344 :299–302.

  • 6

    Warsame M, Wernsdorfer WH, Payne D, Bjorkman A, 2001. Susceptibility of Plasmodium falciparum in vitro to chloroquine, mefloquine, quinine and sulfadoxine/pyrimethamine in Somalia: relationships between the responses to the different drugs. Trans R Soc Trop Med Hyg 85 :565–569.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7

    Desjardins RE, Canfield CJ, Haynes JD, Chulay JD, 1979. Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob Agents Chemother 16 :710–718.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8

    Foote SJ, Cowman AF, 1994. The mode of action and the mechanism of resistance to antimalarial drugs. Acta Trop 56 :157–171.

  • 9

    Bruce-Chwart LJ, Black RH, Canfield CJ, Clyde DF, Peters W, Wemsdorfer WH, 1981. Chemotherapy of malaria. WHO Monograph Series 27 :211–224.

  • 10

    Djimde A, Doumbo OK, Cortese JF, Kayentao K, Doumbo S, Diourte Y, Dicko A, Su XZ, Nomura T, Fidock DA, Wellems TE, Plowe CV, Coulibaly D, 2001. A molecular marker for chloroquine-resistant falciparum malaria. N Engl J Med 344 :257–263.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11

    Anderson TJ, Nair S, Sudimack D, Williams JT, Mayxay M, Newton PN, Guthmann JP, Smithuis FM, Tran TH, van den Broek IV, White NJ, Nosten F, 2005. Geographical distribution of selected and putatively neutral SNPs in Southeast Asian malaria parasites. Mol Biol Evol 22 :2362–2374.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12

    Duraisingh MT, Drakeley CJ, Muller O, Bailey R, Snounou G, Targett GA, Greenwood BM, Warhurst DC, 1997. Evidence for selection for the tyrosine-86 allele of the pfmdr 1 gene of Plasmodium falciparum by chloroquine and amodiaquine. Parasitology 114 :205–211.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13

    Duraisingh MT, Cowman AF, 2005. Contribution of the pfmdr1 gene to antimalarial drug-resistance. Acta Trop 94 :181–190.

  • 14

    Fidock DA, Nomura T, Talley AK, Cooper RA, Dzekunov SM, Ferdig MT, Ursos LM, Sidhu AB, Naude B, Deitsch KW, Su XZ, Wootton JC, Roepe PD, Wellems TE, 2000. Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. Mol Cell 6 :861–871.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15

    Reed MB, Saliba KJ, Caruana SR, Kirk K, Cowman AF, 2000. Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum. Nature 403 :906–909.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16

    Plowe CV, Cortese JF, Djimde A, Nwanyanwu OC, Watkins WM, Winstanley PA, Estrada-Franco JG, Mollinedo RE, Avila JC, Cespedes JL, 1997. Mutations in Plasmodium falciparum dihydrofolate reductase and dihydropteroate synthase and epidemiologic patterns of pyrimethamine-sulfadoxine use and resistance. J Infect Dis 176 :1590–1596.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17

    Jelinek T, Ronn AM, Lemnge MM, Curtis J, Mhina J, Duraisingh MT, Bygbjerg IC, Warhurst DC, 1998. Polymorphisms in the dihydrofolate reductase (DHFR) and dihydropteroate synthetase (DHPS) genes of Plasmodium falciparum and in vivo resistance to sulphadoxine/pyrimethamine in isolates from Tanzania. Trop Med Int Health 3 :605–609.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    Nzila AM, Mberu EK, Sulo J, Dayo H, Winstanley PA, Sibley CH, Watkins WM, 2000. Towards an understanding of the mechanism of pyrimethamine-sulfadoxine resistance in Plasmodium falciparum: genotyping of dihydrofolate reductase and dihydropteroate synthase of Kenyan parasites. Antimicrob Agents Chemother 44 :991–996.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19

    Nzila AM, Mberu EK, Nduati E, Ross A, Watkins WM, Sibley CH, 2002. Genetic diversity of Plasmodium falciparum parasites from Kenya is not affected by antifolate drug selection. Int J Parasitol 32 :1469–1476.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20

    Kublin JG, Dzinjalamala FK, Kamwendo DD, Malkin EM, Cortese JF, Martino LM, 2002. Molecular markers for failure of sulfadoxine-pyrimethamine and chlorproguanil-dapsone treatment of Plasmodium falciparum malaria. J Infect Dis 185 :380–388.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21

    Eriksen S, Mwankusye S, Mduma A, Kitua G, Swedberg G, Tomson LL, Gustafsson G, Warsame M, 2005. Patterns of resistance and DHFR/DHPS genotypes of Plasmodium falciparum in rural Tanzania prior to the adoption of sulfadoxine–pyrimethamine as first-line treatment. Trans R Soc Trop Med Hyg 98 :347–353.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22

    Staedke SG, Sendagire H, Lamola S, Kamya MR, Dorsey G, Rosenthal PJ, 2004. Relationship between age, molecular markers, and response to sulphadoxine-pyrimethamine treatment in Kampala, Uganda. Trop Med Int Health 9 :624–629.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23

    Pierce PF, Milhous WK, Campbell CC, 1987. Clinical and laboratory characterization of a chloroquine-resistant Plasmodium falciparum strain acquired in the Central African Republic. Am J Trop Med Hyg 36 :1–2.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24

    Belec L, Delmont J, Vesters I, Testa J, Christian KS, Georges AJ, 1988. Emergence of multiresistant Plasmodium falciparum malaria in Central African Republic. Press Med 17 :2090–2091.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25

    Menard D, Madji N, Manirakiza A, Djalle D, Koula MR, Talarmin A, 2005. Efficacy of chloroquine, amodiaquine, sulfadoxine-pyrimethamine, chloroquine-sulfadoxine-pyrimethamine combination, and amodiaquine-sulfadoxine-pyrimethamine combination in Central African children with noncomplicated malaria. Am J Trop Med Hyg 72 :581–585.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    Menard D, Yapou F, Siadoua V, Sana S, Matsika-Claquin MD, Madji N, Talarmin A, 2005. Drug-resistant malaria in Bangui (Central African Republic): an in vitro assessment. Am J Trop Med Hyg 73 :239–243.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27

    Menard D, Djalle D, Yapou F, Manirakiza A, Talarmin A, 2005. Frequency distribution of antimalarial drug-resistant alleles among isolates of Plasmodium falciparum in Bangui, Central African Republic. Am J Trop Med Hyg 74 :205–210.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28

    UNICEF, 2001. Enquête à indicateurs multiples, MICS 2000. Editions B, ed. Rapport Final Bangui Bangui: Ministère du Plan, RCA, 130–131.

    • PubMed
    • Export Citation
  • 29

    Snounou G, Zhu X, Siripoon N, 1999. Biased distribution of msp1 and msp2 allelic variants in Plasmodium falciparum populations in Thailand. Trans R Soc Trop Med Hyg 93 :369–374.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30

    Menard D, Dolmazon V, Matsika-Claquin MD, Manirakiza A, Yapou F, Nambot M, Talarmin A, 2006. Genetic diversity and genotype multiplicity of Plasmodium falciparum infections in symptomatic individuals living in Bangui (CAR). Trans R Soc Trop Med Hyg.

    • PubMed
    • Export Citation
  • 31

    Nzila A, Ochong E, Nduati E, Gilbert K, Winstanley P, Ward S, Marsh K, 2005. Why has the dihydrofolate reductase 164 mutation not consistently been found in Africa yet? Trans R Soc Trop Med Hyg 99 :341–346.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32

    Peterson DS, Di Santi SM, Povoa M, Calvosa VS, Do Rosario VE, Wellems TE, 1991. Prevalence of the dihydrofolate reductase Asn-108 mutation as the basis for pyrimethamine-resistant falciparum malaria in the Brazilian Amazon. Am J Trop Med Hyg 45 :492–497.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33

    Basco LK, Eldin de Pecoulas P, Wilson CM, Le Bras J, Mazabraud A, 1995. Point mutations in the dihydrofolate reductase-thymidylate synthase gene and pyrimethamine and cycloguanil resistance in Plasmodium falciparum. Mol Biochem Parasitol 69 :135–138.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34

    Nzila-Mounda A, Mberu EK, Sibley CH, Plowe CV, Winstanley PA, Watkins WM, 1998. Kenyan Plasmodium falciparum field isolates: correlation between pyrimethamine and chlorcycloguanil activity in vitro and point mutations in the dihydrofolate reductase domain. Antimicrob Agents Chemother 42 :164–169.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35

    Khalil I, Ronn AM, Alifrangis M, Gabar HA, Satti GM, Bygbjerg IC, 2003. Dihydrofolate reductase and dihydropteroate synthase genotypes associated with in vitro resistance of Plasmodium falciparum to pyrimethamine, trimethoprim, sulfadoxine, and sulfamethoxazole. Am J Trop Med Hyg 68 :586–589.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36

    Francis D, Nsobya SL, Talisuna A, Yeka A, Kamya MR, Machekano R, Dokomajilar C, Rosenthal PJ, Dorsey G, 2006. Geographic differences in antimalarial drug efficacy in Uganda are explained by differences in endemicity and not by known molecular markers of drug resistance. J Infect Dis 193 :978–986.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37

    Pradines B, Mabika Mamfoumbi M, Parzy D, Owono Medang M, Lebeau C, Mourou Mbina JR, Doury JC, Kombila M, 1998. In vitro susceptibility of Gabonese wild isolates of Plasmodium falciparum to artemether, and comparison with chloroquine, quinine, halofantrine and amodiaquine. Parasitology 117 :541–545.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38

    Holmgren G, Gil JP, Ferreira PM, Veiga MI, Obonyo CO, Bjorkman A, 2006. Amodiaquine resistant Plasmodium falciparum malaria in vivo is associated with selection of pfcrt 76T and pfmdr186Y. Infect Genet Evol. 6 :309–314.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39

    Wellems TE, Plowe CV, 2001. Chloroquine-resistant malaria. J Infect Dis 184 :770–776.

  • 40

    Van Hensbroek MB, Morris-Jones S, Meisner S, Jaffar S, Bayo L, Dackour R, Phillips C, Greenwood BM, 1995. Iron, but not folic acid, combined with effective antimalarial therapy promotes haematological recovery in African children after acute falciparum malaria. Trans R Soc Trop Med Hyg 89 :672–676.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41

    Watkins WM, Mberu EK, Nevill CG, Ward SA, Breckenridge AM, Koech DK, 1990. Variability in the metabolism of proguanil to the active metabolite cycloguanil in healthy Kenyan adults. Trans R Soc Trop Med Hyg 84 :492–495.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42

    Foote SJ, Kyle DE, Martin RK, Oduola AM, Forsyth K, Kemp DJ, Cowman AF, 1990. Several alleles of the multidrug-resistance gene are closely linked to chloroquine resistance in Plasmodium falciparum. Nature 345 :255–258.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43

    Babiker HA, Pringle SJ, Abdel-Muhsin A, Mackinnon M, Hunt P, Walliker D, 2001. High-level chloroquine resistance in Sudanese isolates of Plasmodium falciparum is associated with mutations in the chloroquine resistance transporter gene pfcrt and the multidrug resistance Gene Pfmdr. J Infect Dis 183 :1535–1538.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44

    Nagesha HS, Din-Syafruddin, Casey GJ, Susanti AI, Fryauff DJ, Reeder JC, Cowman AF, 2001. Mutations in the pfmdr1, dhfr and dhps genes of Plasmodium falciparum are associated with in-vivo drug resistance in West Papua, Indonesia. Trans R Soc Trop Med Hyg 95: 43 –49.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45

    Von Seidlein L, Duraisingh MT, Drakeley CJ, Bailey R, Greenwodd BM, Pinder M, 1997. Polymorphisms in the pfmdr1 gene and chloroquine resistance in Plasmodium falciparum in the Gambia. Trans R Soc Trop Med Hyg 91 :450–453.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46

    Basco LK, Ringwald P, 1997. pfmdr1 gene mutation and clinical response to chloroquine in Yaounde, Cameroon. Trans R Soc Trop Med Hyg 91 :210–211.

  • 47

    Haruki K, Bray PG, Ward SA, Hommel M, Ritchie GY, Chloroquine resistance of Plasmodium falciparum: further evidence for a lack of association with mutations of the pfmdr1 gene. Trans R Soc Trop Med Hyg 88: 694.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48

    Pillai DR, Labbe AC, Vanisaveth V, Hongvangthong B, Pomphida S, Inkathone S, Zhong K, Kain KC, 2001. Plasmodium falciparum malaria in Laos: chloroquine treatment outcome and predictive value of molecular markers. J Infect Dis 183 :789–795.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49

    Duraisingh MT, Jones P, Sambou I, von Seidlein L, Pinder M, Warhurst DC, 1999. Inoculum effect leads to overestimation of in vitro resistance for artemisinin derivatives and standard antimalarials: a Gambian field study. Parasitology 119 :435–440.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50

    Price RN, Uhlemann AC, Brockman A, McGready R, Ashley E, Phaipun L, Patel R, Laing K, Looareesuwan S, White NJ, Nosten F, Krishna S, 2004. Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number. Lancet 364 :438–447.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51

    Wilson CM, Volkman SK, Thaithong S, Martin RK, Kyle DE, Milhous WK, Wirth DF, 1993. Amplification of pfmdr1 associated with mefloquine and halofantrine resistance in Plasmodium falciparum from Thailand. Mol Biochem Parasitol 57 :151–160.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52

    Mu J, Ferdig MT, Feng X, Joy DA, Duan J, Furuya T, Subramanian G, Aravind L, Cooper RA, Wootton JC, Xiong M, Su XZ, 2003. Multiple transporters associated with malaria parasite responses to chloroquine and quinine. Mol Microbiol 49 :977–989.

    • PubMed
    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 306 252 12
Full Text Views 351 13 6
PDF Downloads 93 13 4
 

 

 

 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save