Subbarao K, Klimov A, Katz J, Regnery H, Lim W, Hall H, Perdue M, Swayne D, Bender C, Huang J, Hemphill M, Rowe T, Shaw M, Xu X, Fukuda K, Cox N, 1998. Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. Science 279 :393–396.
Yuen KY, Chan PKS, Peiris M, Tsang DNC, Que TL, Shortridge KF, Cheung PT, To WK, Ho ET, Sung R, Cheng AF, 1998. Clinical features and rapid viral diagnosis of human disease associated with avian influenza A H5N1 virus. Lancet 351 :467–471.
World Organization for Animal Health, Animal disease data, compilation of data by disease, Avian influenza. Accessed January 14, 2006. Available online at http://www.oie.int/eng/info/hebdo/A_DSVM.htm
Mase M, Tsukamoto K, Imada T, Imai K, Tanimura N, Nakamura K, Yasunori Y, Hitomi T, Kra T, Nakai T, Kiso M, Horimoto T, Kawaoka Y, Yamaguchi S, 2005. Characterization of H5N1 influenza A viruses isolated during the 2003–2004 influenza outbreaks in Japan. Virology 332 :167–176.
Nakajima K, Nobusawa E, Ogawa T, Nakajima S, 1987. Genetic divergence of the NS genes of avian influenza viruses. Virology 158 :465–468.
Food Safety and Consumer Bureau, Ministry of Agriculture, Forestry and Fisheries, Japan. Accessed June 30, 2004. Report of highly pathogenic avian influenza infection route elucidation team, 2004. Routes of infection of highly pathogenic avian influenza in Japan. Available online at http://www.maff.go.jp/tori/20040630e_report.pdf.
Calibeo-Hayes D, Denning SS, Stringham SM, Guy JS, Smith LG, Watson DW, 2003. Mechanical transmission of turley coronavirus by domestic houseflies (Musca domestica Linnaeaus). Avian Dis 47 :149–153.
Tan SW, Yap KL, Lee HL, 1997. Mechanical transport of rotavirus by the legs and wings of Musca domestica (Diptera: Muscidae). J Med Entomol 34 :527–531.
Iwasa M, Makino S, Asakura H, Kobori H, Morimoto Y, 1999. Detection of Escherichia coli O157:H7 from Musca domestica (Diptera: Muscidae) at a cattle farm in Japan. J Med Entomol 36 :108–112.
Sasaki T, Kobayashi M, Agui N, 2000. Epidemiological potential of excretion and regurgitation by Musca domestica (Diptera: Muscidae) in the dissemination of Escherichia coli O157: H7 to food. J Med Entomol 37 :945–949.
Hoffmann E, Stech J, Guan Y, Webster RG, Perez DR, 2001. Universal primer set for the full-length amplification of all influenza A viruses. Arch Virol 146 :2275–2289.
Kawai S, Kurahashi H, Shudou C, Wada G, 1985. Seasonal distribution of Aldrichina grahami (Aldrich) in Mt. Hachijo-Fuji, Hachijo Island. Jpn J Sanit Zool 36 :49–54.
Kawai S, Kurahashi H, Shudo C, Wada Y, 1987. Seasonal fluctuation of Aldrichina grahami (Aldrich) in Aogashima Island. Jpn J Sanit Zool 38 :245–247.
Kurahashi H, Kawai S, Shudo C, Wada G, 1984. Seasonal prevalence of adult fly and life cycle of Aldrichina grahami (Aldrich) in Tokyo. Jpn J Sanit Zool 35 :261–267.
Kurahashi H, Kawai S, Shudo C, 1991. Seasonal migration of Japanese blow flies, Aldrichina grahami (Aldrich) and Calliphora nigribarbis Vollenhoven, observed by a mark and recapture method on Hachijyo Island, Tokyo. Jpn J Sanit Zool 42 :57–59.
Kurahashi H, Kawai S, Shudo C, Wada Y, 1994. The life history of Calliphora nigribarbis Vollenhoven in Mt. Hachijo-Fuji, Hachijo Island. Jpn J Sanit Zool 45 :327–332.
Axtell RC, 1999. Poultry integrated pest management: Status and future. Integrated Pest Manage Rev 4 :53–73.
Greenberg B, 1973. Flies and Disease, vol. II. Biology and Disease Transmission. Princeton, NJ: Princeton University Press.
Hainsworth FR, Fisher G, Precup E, 1990. Rates of energy processing by blowflies: The uses for a joule vary with food quality and quantity. J Exp Biol 150 :257–268.
Crosskey RW, Lane RP, 1993. House-flies, blow-flies and their allies (calyptrate Diptera). Lane RP, Crosskey RW, eds. Medical Insects and Arachnids. London: Chapman & Hall, 403–428.
Kurahashi H, 1991. The calyptrate muscoid flies collected on weather ships located at the ocean weather stations. Jpn J Sanit Zool 42 :53–55.
Suenaga O, Kurahashi H, 1997. Witnessing hundreds of Calliphora nigribarbis in migratory flight and landing in Nagasaki, Western Japan. Med Entomol Zool 48 :55–58.
Otake S, Dee SA, Moon RD, Rossow KD, Trincado C, Pijoan C, 2004. Studies on the carriage and transmission of porcine reproductive and respiratory syndrome virus by individual houseflies (Musca domestica). Vet Rec 154 :80–85.
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 2094 | 1877 | 524 |
Full Text Views | 410 | 11 | 0 |
PDF Downloads | 199 | 11 | 0 |
During the outbreak of highly pathogenic avian influenza that occurred in Tamba Town, Kyoto Prefecture in 2004, a total of 926 flies were collected from six sites within a radius of 2.3 km from the poultry farm. The H5 influenza A virus genes were detected from the intestinal organs, crop, and gut of the two blow fly species, Calliphora nigribarbis and Aldrichina grahami, by reverse transcription-polymerase chain reaction for the matrix protein (M) and hemagglutinin (HA) genes. The HA gene encoding multiple basic amino acids at the HA cleavage site indicated that this virus is a highly pathogenic strain. Based on the full-length sequences of the M, HA, and neuraminidase (NA) segments of virus isolates through embryonated chicken eggs, the virus from C. nigribarbis (A/blow fly/Kyoto/93/2004) was characterized as H5N1 subtype influenza A virus and shown to have > 99.9% identities in all three RNA segments to a strain from chickens (A/chicken/Kyoto/3/2004) and crows (A/crows/Kyoto/53/2004) derived during this outbreak period in Kyoto in 2004. Our results suggest it is possible that blow flies could become a mechanical transmitter of H5N1 influenza virus.
Subbarao K, Klimov A, Katz J, Regnery H, Lim W, Hall H, Perdue M, Swayne D, Bender C, Huang J, Hemphill M, Rowe T, Shaw M, Xu X, Fukuda K, Cox N, 1998. Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. Science 279 :393–396.
Yuen KY, Chan PKS, Peiris M, Tsang DNC, Que TL, Shortridge KF, Cheung PT, To WK, Ho ET, Sung R, Cheng AF, 1998. Clinical features and rapid viral diagnosis of human disease associated with avian influenza A H5N1 virus. Lancet 351 :467–471.
World Organization for Animal Health, Animal disease data, compilation of data by disease, Avian influenza. Accessed January 14, 2006. Available online at http://www.oie.int/eng/info/hebdo/A_DSVM.htm
Mase M, Tsukamoto K, Imada T, Imai K, Tanimura N, Nakamura K, Yasunori Y, Hitomi T, Kra T, Nakai T, Kiso M, Horimoto T, Kawaoka Y, Yamaguchi S, 2005. Characterization of H5N1 influenza A viruses isolated during the 2003–2004 influenza outbreaks in Japan. Virology 332 :167–176.
Nakajima K, Nobusawa E, Ogawa T, Nakajima S, 1987. Genetic divergence of the NS genes of avian influenza viruses. Virology 158 :465–468.
Food Safety and Consumer Bureau, Ministry of Agriculture, Forestry and Fisheries, Japan. Accessed June 30, 2004. Report of highly pathogenic avian influenza infection route elucidation team, 2004. Routes of infection of highly pathogenic avian influenza in Japan. Available online at http://www.maff.go.jp/tori/20040630e_report.pdf.
Calibeo-Hayes D, Denning SS, Stringham SM, Guy JS, Smith LG, Watson DW, 2003. Mechanical transmission of turley coronavirus by domestic houseflies (Musca domestica Linnaeaus). Avian Dis 47 :149–153.
Tan SW, Yap KL, Lee HL, 1997. Mechanical transport of rotavirus by the legs and wings of Musca domestica (Diptera: Muscidae). J Med Entomol 34 :527–531.
Iwasa M, Makino S, Asakura H, Kobori H, Morimoto Y, 1999. Detection of Escherichia coli O157:H7 from Musca domestica (Diptera: Muscidae) at a cattle farm in Japan. J Med Entomol 36 :108–112.
Sasaki T, Kobayashi M, Agui N, 2000. Epidemiological potential of excretion and regurgitation by Musca domestica (Diptera: Muscidae) in the dissemination of Escherichia coli O157: H7 to food. J Med Entomol 37 :945–949.
Hoffmann E, Stech J, Guan Y, Webster RG, Perez DR, 2001. Universal primer set for the full-length amplification of all influenza A viruses. Arch Virol 146 :2275–2289.
Kawai S, Kurahashi H, Shudou C, Wada G, 1985. Seasonal distribution of Aldrichina grahami (Aldrich) in Mt. Hachijo-Fuji, Hachijo Island. Jpn J Sanit Zool 36 :49–54.
Kawai S, Kurahashi H, Shudo C, Wada Y, 1987. Seasonal fluctuation of Aldrichina grahami (Aldrich) in Aogashima Island. Jpn J Sanit Zool 38 :245–247.
Kurahashi H, Kawai S, Shudo C, Wada G, 1984. Seasonal prevalence of adult fly and life cycle of Aldrichina grahami (Aldrich) in Tokyo. Jpn J Sanit Zool 35 :261–267.
Kurahashi H, Kawai S, Shudo C, 1991. Seasonal migration of Japanese blow flies, Aldrichina grahami (Aldrich) and Calliphora nigribarbis Vollenhoven, observed by a mark and recapture method on Hachijyo Island, Tokyo. Jpn J Sanit Zool 42 :57–59.
Kurahashi H, Kawai S, Shudo C, Wada Y, 1994. The life history of Calliphora nigribarbis Vollenhoven in Mt. Hachijo-Fuji, Hachijo Island. Jpn J Sanit Zool 45 :327–332.
Axtell RC, 1999. Poultry integrated pest management: Status and future. Integrated Pest Manage Rev 4 :53–73.
Greenberg B, 1973. Flies and Disease, vol. II. Biology and Disease Transmission. Princeton, NJ: Princeton University Press.
Hainsworth FR, Fisher G, Precup E, 1990. Rates of energy processing by blowflies: The uses for a joule vary with food quality and quantity. J Exp Biol 150 :257–268.
Crosskey RW, Lane RP, 1993. House-flies, blow-flies and their allies (calyptrate Diptera). Lane RP, Crosskey RW, eds. Medical Insects and Arachnids. London: Chapman & Hall, 403–428.
Kurahashi H, 1991. The calyptrate muscoid flies collected on weather ships located at the ocean weather stations. Jpn J Sanit Zool 42 :53–55.
Suenaga O, Kurahashi H, 1997. Witnessing hundreds of Calliphora nigribarbis in migratory flight and landing in Nagasaki, Western Japan. Med Entomol Zool 48 :55–58.
Otake S, Dee SA, Moon RD, Rossow KD, Trincado C, Pijoan C, 2004. Studies on the carriage and transmission of porcine reproductive and respiratory syndrome virus by individual houseflies (Musca domestica). Vet Rec 154 :80–85.
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 2094 | 1877 | 524 |
Full Text Views | 410 | 11 | 0 |
PDF Downloads | 199 | 11 | 0 |